Math 205 Test 1 Preparation

- 1. The test covers chapters 12 and 13
- The open ended test questions will be based on the homework. There will be some multiple choice questions on the test. These questions will focus on concepts and shortened homework-type problems.
- 3. Memorize the following formulas:
 - a) Distance formula in space.
 - b) The following formulas involving vectors.
 - i) magnitude
 - ii) angle between two vectors
 - iii) vector projection, work, and torque formulas
 - iv) dot and cross products
 - v) unit vector

Let $\mathbf{r}(t)$ be a position vector of an object traveling along a smooth curve in space.

c) $\mathbf{v}(t) = \mathbf{r}'(t)$ is the object's velocity vector.

d)
$$\|\mathbf{v}(t)\| = \frac{ds}{dt}$$
 is called the object's **speed**.

e)
$$\mathbf{a}(t) = \mathbf{r}''(t)$$
 is called the object's acceleration vector.

f) The unit tangent vector:
$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|} = \frac{\mathbf{v}(t)}{\|\mathbf{v}(t)\|}$$
.

g) The principal unit normal vector:
$$\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{\|\mathbf{T}'(t)\|}$$

h)
$$\mathbf{a}(t) = a_{\mathbf{T}} \mathbf{T}(t) + a_{\mathbf{N}} \mathbf{N}(t)$$
, where $a_{\mathbf{T}} = \frac{d}{dt} \| \mathbf{v}(t) \|$ and $a_{\mathbf{N}} = \|\mathbf{v}\| \| \mathbf{T}'(t) \|$

i) $a_{\mathbf{T}} = \mathbf{a} \bullet \mathbf{T}$

j)
$$a_{\mathbf{N}} = \mathbf{a} \bullet \mathbf{N} = \sqrt{\|\mathbf{a}\|^2 - a_{\mathbf{T}}^2}$$

k) Arc length formula:
$$s = \int_{a} \left\| \mathbf{r}'(t) \right\| dt$$

1) Arc length function:
$$s(t) = \int_{a}^{t} \|\mathbf{r}'(u)\| du$$

m) **Curvature**:
$$K = \|\mathbf{T}'(s)\| = \frac{\|\mathbf{T}'(t)\|}{\|\mathbf{r}'(t)\|} = \frac{\|\mathbf{r}'(t) \times \mathbf{r}''(t)\|}{\|r'(t)\|^3}$$

- n) Parametric equations of a line in space: $x = x_1 + at$, $y = y_1 + bt$, $z = z_1 + ct$
- o) Equation of a plane: $a(x x_1) + b(y y_1) + c(z z_1) = 0$.
- p) names of cylinders and quadric surfaces in relation to their equations.

Note: Also know what the letters stand for in each formula.

- 4. A well-prepared student should be able to...
 - a) write the component form of a vector.
 - b) add, subtract, and scalar multiply vectors in component form and interpret the results geometrically.
 - c) write any vector as a linear combination of standard unit vectors.
 - d) solve applications.
 - e) plot points, vectors, and surfaces in a three-dimensional coordinate system.
 - f) find the distance and midpoint between two points in space.
 - g) find the equation of a sphere.
 - h) find the dot product of two vectors.
 - i) find the angle between two vectors.
 - j) find the projection of a vector onto another vector.
 - k) find the work done by a constant force.
 - 1) find the cross product of two vectors.
 - m) interpret the cross product geometrically.
 - n) compute and apply the triple scalar product of three vectors.
 - o) find parametric equations of a line in space.
 - p find the equation of a plane in space.
 - q) sketch a plane given by a linear equation.
 - r) find the distance between points and planes in space.
 - s) write the parametric equations (or vector-valued function) of a curve.
 - t) analyze and sketch a space curve given by a vector-valued function.
 - u) evaluate a limit of a vector-valued function.
 - v) determine the interval(s) on which a vector-valued function is continuous or/and smooth.
 - w) differentiate vector-valued functions.
 - x) integrate vector-valued functions.
 - y) calculate the velocity and acceleration vectors associated with the position function of an object.
 - z) analyze projectile motion using vector-valued functions.
 - aa) find the unit tangent vector **T** at a point on a curve.
 - bb) find the principal unit normal vector N at a point on a curve.
 - cc) find the tangential and normal components of acceleration.
 - dd) find the arc length of a space curve.
 - ee) describe a curve using the arc length parameter.
 - ff) calculate curvature.
 - gg) HOMEWORK-LIKE PROBLEMS!!!