Math 205 Test 2 Preparation

1. The test covers chapter 14
2. The test will be based in large part on the homework and examples from class. So use these as a study guide.
3. Memorize the following formulas.
a) $f_{x}(x, y)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x, y)-f(x, y)}{\Delta x}$ and $f_{y}(x, y)=\lim _{\Delta y \rightarrow 0} \frac{f(x, y+\Delta y)-f(x, y)}{\Delta y}$
b) The total differential: $d z=f_{x}(x, y) d x+f_{y}(x, y) d y$
c) The chain rule formulas
d) Suppose that in the equation $F(x, y)=0, y$ is defined implicitly as a differentiable function of x. If F is differentiable, then $\frac{d y}{d x}=-\frac{F_{x}(x, y)}{F_{y}(x, y)}$.
e) If the equation $F(x, y, z)=0$ defines z implicitly as a differentiable function

$$
\text { of } x \text { and } y \text {, then } \frac{\partial z}{\partial x}=-\frac{F_{x}(x, y, z)}{F_{z}(x, y, z)} \text { and } \frac{\partial z}{\partial y}=-\frac{F_{y}(x, y, z)}{F_{z}(x, y, z)} \text {. }
$$

f) The directional derivative: $D_{u} f(x, y)=f_{x}(x, y) u_{1}+f_{y}(x, y) u_{2}$.
g) The gradient: $\nabla f(x, y)=f_{x}(x, y) \mathbf{i}+f_{y}(x, y) \mathbf{j}$
h) Tangent plane: $z-z_{0}=f_{x}\left(x_{0} y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)$ or

$$
F_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+F_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+F_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)=0
$$

i) The Second Derivative Test
j) Lagrange Multipliers
4. Be very familiar with all theorems and definitions from the chapter (i.e. read over the lecture outlines several times if necessary).
5. A well-prepared student should be able to...
a) analyze functions of several variables numerically, algebraically, and visually.
b) sketch level curves for a function of two variables and be able to use level curves to estimate partial derivatives, directional derivatives, and gradients.
c) verify a limit using substitution (when possible).
d) use a given table or graph to make a conjecture about the existence of a particular limit.
e) prove that a limit doesn't exist by finding two different paths that give two different results for the limit value.
f) use the definition of continuity to determine whether or not a function is continuous at a given point.
g) calculate partial derivatives using the definitions.
h) calculate partial derivatives using short-cuts.
i) estimate partial derivatives using a table
j) interpret the meaning of partial derivatives in an applied problem.
k) calculate a total differential
l) determine whether or not a function is differentiable.
m) use $d z$ to approximate Δz.
n) calculate partial derivatives using the Chain Rules.
o) calculate partial derivatives implicitly.
p) calculate the directional derivative of a multivariable function.
q) calculate the gradient of a multivariable function.
r) solve applications involving a gradient.
s) find the equations of a tangent plane and normal line to a surface.
t) find the absolute and relative extrema of a two-variable function (don't forget to study Lagrange Multipliers!!!).
u) find local extrema using the Second Partials Test.
v) solve optimization problems using both the methods of 14.7 and 14.8 .
w) solve homework-like problems!!!

