Goals:

1. To evaluate an iterated integral.
2. To use an iterated integral to find the area of a rectangular plane region.
3. To evaluate a double integral over a rectangular region using an iterated integral.
ex
Integrate $\int_{1}^{2}\left(x^{2}+3 y^{2}\right) d y$

$$
\begin{aligned}
& =\left[x^{2} y+\left.y^{3}\right|_{y \oplus 1} ^{y=2}\right. \\
& =\left(2 x^{2}+8\right)-\left(x^{2}+1\right) \\
& =x^{2}+7
\end{aligned}
$$

ex

$$
\begin{aligned}
\text { Evaluate } & \int_{0}^{3} \underbrace{\int_{0}^{3}} \underbrace{\left.\int_{1}^{2}\left(x^{2}+3 y^{2}\right) d y\right] d x=30} d x \\
& {\left[\frac{x^{3}}{3}+\left.7 x\right|_{0} ^{3}\right.} \\
= & \left(\frac{3^{3}}{3}+x(3)-0\right.
\end{aligned}
$$

$$
\begin{aligned}
& =9+21 \\
& =30
\end{aligned}
$$

Fubinis Theorem: Let f be continuous on $[a, b] \times[c, d]$. Then....

$$
\iint_{R} f(x, y) d A=\iint_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\iint_{c}^{d} f(x, y) d x d y
$$

This says you get the same answer, no matter the order of integration.

$$
\text { A } V=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x
$$

$$
=\iint_{n} f(x, y) d A
$$

(ex) Evaluate the double integral

$$
\begin{aligned}
& \iint \frac{x y^{2}}{x^{2}+1} d A, \quad R=\left\{(x, y) \left\lvert\, \begin{array}{l}
{[0,1] \times[-3,3]} \\
0 \leq x \leq 1,-3 \leq y \leq 3
\end{array}\right.\right\} \\
& \frac{f}{3} \\
& \begin{array}{l}
\int_{0}^{1} \int_{-3}^{3}\left(\frac{x y^{2}}{x^{2}+1}\right) d y d x \\
\int_{0}^{1} \int_{-3}^{3}\left(\frac{x}{x^{2}+1}\right) y^{2} d y d x
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} \ln 2 \cdot \frac{1}{3}\left[27-(-3)^{3}\right] \\
& =\frac{1}{2} \ln 2 \cdot \frac{1}{3}[54] \\
& =9 \ln 2
\end{aligned}
$$

Note: $\iint_{R} g(x) h(y) d A=\int_{a}^{b} g(x) d x \int_{c}^{d} h(y) d y$
where $R=[a, b] \times[c, d]$
(ex) Find the volume of the solid enclosed by $6 z=1+e^{x} \sin y$ and planes $x= \pm 1, y=0, y=\pi, z=0$

lines in $x y$-plane xy-plane

$$
\begin{aligned}
& \int_{0}^{\pi}\left[\int_{-1}^{1}\left(1+e^{x} \sin y\right) d x\right] d y \\
= & \int_{0}^{\pi}\left[x+e^{x} \sin y\right]_{n-1}^{x-1} d y \\
= & \int_{0}^{\pi}\left[(1+e \sin y)-\left(-1+e^{-1} \sin y\right)\right] d y \\
= & \int_{0}^{\pi}\left(2+e \sin y-e^{-1} \sin y\right) d y \\
= & {\left[2 y-e \cos y+e^{-1} \cos y\right]_{0}^{\pi} } \\
= & 2 \pi-e(-1)+e^{-1}(-1)-\left(0-e+e^{-1}\right) \\
= & 2 \pi+2 e-\frac{2}{-}
\end{aligned}
$$

$=2 \pi+2 e-\frac{2}{e}$

