The Shell Method of Finding Volume of Solids of Rotation

Goal: To find the volume of a solid of revolution using the Shell Method.
(ex) Find the volume. Rotate about the y-axis:
Region: $y=x-x^{3}, y=0,0 \leq x \leq 1$

$$
V_{i}=2 \pi x_{i}\left(x_{i}-x_{i}^{3}\right) \Delta x
$$

$$
\begin{aligned}
V_{i} & =2 \pi x_{i}\left(x_{i}-x_{i}\right) \Delta x \\
V & =2 \pi \int_{0}^{1} \overbrace{x\left(x-x^{3}\right) d x}^{1} \\
& =2 \pi \int_{0}^{1}\left(x^{2}-x^{4}\right) d x
\end{aligned} \quad \begin{aligned}
& 2 \pi\left[\frac{1}{3}-\frac{1}{5}\right] \\
& \\
& 2 \pi\left[\frac{5}{15}-\frac{3}{15}\right]
\end{aligned}
$$

$$
\left.=2 \pi\left[\frac{x^{3}}{3}-\frac{x^{5}}{5}\right]_{0}^{1}\right]
$$

(ex) Find the volume. Rotate about the x-axis:
Region: $x+y=3$,

$x+y=3$

(ex) Find the Volume
Region: $y=x^{3}+x+1, y=1$, and $x=1$. Rotate

$V_{i}=2 \pi\left(2-x_{i}\right)\left(x_{i}^{3}+x_{i}\right) \Delta x$
$V=2 \pi \int_{0}^{1}(2-x)\left(x^{3}+x\right) d x$
$=\frac{29 \pi}{15}$
shell
Exercise: A pontoon is to be designed by rotating the graph of $y=1-\frac{x^{2}}{16}$, $-4 \leq x \leq 4$ about the x-axis. Find the volume of the pontoon.

