Polar Curves

Goals: To plot curves and take derivatives in polar coordinates.
Polar Coordinates

(ex) plot the points
a) $\left.\quad \begin{array}{l}r \\ \left(\begin{array}{l}\theta \\ q_{1}\end{array}, \frac{\pi}{3}\right.\end{array}\right)$
b) $\left(\stackrel{r}{\bullet}, \frac{\pi}{4}\right)$

coordinate conversions

$$
\begin{aligned}
& r^{2}=x^{2}+y^{2} \\
& x=r \cos \theta \\
& y=r \sin \theta \\
& \tan \theta=\frac{y}{x}
\end{aligned}
$$

(ax) comers to rectangake
(ax) comers to rectangakr
a) $(r, \theta)=\left(5, \frac{\pi}{6}\right)$

$$
\begin{aligned}
& x=r \cos \theta=5 \cos \frac{\pi}{6}=5 \cdot \frac{\sqrt{3}}{2}=\frac{5 \sqrt{3}}{2} \\
& y=r \sin \theta=5 \sin \frac{\pi}{6}=5 \cdot \frac{1}{2}=\frac{5}{2}
\end{aligned}
$$

$$
\left(\frac{5 \sqrt{3}}{2}, \frac{5}{2}\right)
$$

$$
\begin{aligned}
& \text { b) } r=\cos \theta+2 \sin \theta \\
& r \cdot r=r(\cos \theta+2 \sin \theta) \\
& r^{2}=r \cos \theta+2 r \sin \theta \\
& x^{2}+y^{2}=x+2 y \\
& x^{2}-1 x+\frac{1}{4}+y^{2}-2 y+1=0+\frac{1}{4}+1 \\
& \left(x-\frac{1}{2}\right)^{2}+(y-1)^{2}=\frac{5}{4}
\end{aligned}
$$

Circle: $\quad C\left(\frac{1}{2}, 1\right) \quad$ radius $=\frac{\sqrt{5}}{2}$
c) convert to polar: $\left(\begin{array}{c}x \\ (-1, y \\ -1\end{array}\right)$
we need $(n, \theta) \quad \tan \theta=\frac{y}{x}$

$$
\begin{array}{ll}
r^{2}=x^{2}+y^{2} & \tan \theta=\frac{1}{-1}=-1 \\
r^{2}=(-1)^{2}+(1)^{2} & \alpha=\frac{\pi}{4} \\
r^{2}=2 & \theta=\frac{3 \pi}{4} \\
r=\sqrt{2} &
\end{array}
$$

(ex) Graph
a) $r=2$

b) $\quad \theta=\frac{\pi}{3}$

Special Polar Graphs

Limacon

$$
\begin{gathered}
r=\frac{1+2}{\pi} \sin \theta \\
\frac{1}{2}
\end{gathered}
$$

$r=a \pm b \cos \theta$ or $r=a \pm b \sin \theta$ and b constants
$\left.0<\left|\frac{a}{b}\right|<1 \quad\left|\frac{a}{b}\right|=1 \quad\left|<\left|\frac{a}{b}\right|<2 \quad\right| \frac{a}{b} \right\rvert\,>2$

Rose Curves

$$
r=a \sin (n \theta) \text { or } r=a \cos (n \theta) \text {, were }
$$

n is a counting number >1. $\quad(n=2,3,4, \cdots)$

If n is odd $\rightarrow n$ petals
n is even $\rightarrow 2$ a petals
(ex) Graph
a) $r=1+2 \cos \theta$

$$
\begin{aligned}
& \text { limacine } \\
& a=1 \quad b=2 \\
& \left|\frac{a}{b}\right|=\frac{1}{2}
\end{aligned}
$$

b) $r=2 \sin (30$

$$
n=3
$$

$$
3 \text { petals }
$$

$$
\begin{aligned}
p= & \frac{2 \pi}{3} \\
& \frac{360^{\circ}}{3}=\left(120^{\circ}\right.
\end{aligned}
$$

(ex) Find the slope of the tangent line to
(ex) Find the slope of the tangent line to $r=2 \sin \theta$ at $\theta=\frac{\pi}{6}-$
$x=f(\theta), y=g(\theta) \quad$ parametric
eqns.

$$
\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{d+/ \Delta \theta}
$$

$$
x=r \cos \theta, \quad y=r \sin \theta
$$

$$
x=\underbrace{2 \sin \theta \cos \theta}_{: \sin 2 \theta}, y=2 \sin ^{2} \theta
$$

$$
\text { , } \frac{d y}{d \theta}=4 \sin \theta \cos \theta
$$

$$
\frac{d x}{d \theta}=\left(2\left(\cos ^{2} \theta-\sin ^{2} \theta\right)\right.
$$

$$
\frac{d y}{d x}=\frac{2 \sin \theta \cos \theta}{\cos ^{2} \theta-\sin ^{2} \theta}
$$

$$
=\frac{\sin 2 \theta}{\cos 2 \theta}
$$

$$
\frac{d y}{d x}=\tan (2 \theta)
$$

$$
\left.\frac{d y}{d x}\right|_{\theta=\frac{\pi}{6}}=\tan \left(2\left(\frac{\pi}{6}\right)\right)=\tan \left(\frac{\pi}{3}\right)=\sqrt{3}
$$

Notes: (1) To find a H-tangent to a polar curve
set $d y / d \theta=0$ and
(2) To find a V-tangent set

$$
\frac{d x}{d \theta}=0
$$

$$
\frac{d x}{d \theta}=0
$$

(3) Be careful if both $\frac{d y}{d \theta}=0$ and $\frac{d x}{d \theta}=0$

