Goal: To graph a curve defined parametrically.
When we graph a function $y=f(x)$, we plot points, $(x, f(x))$. In this section, we define both coordinates (x, y) as functions of a third variable, t :
$x=f(t){ }^{\text {parametric equations. }}$
$y=g(t)$ is called the parameter
(ex) Plot the graph of the following parametric equations:

$$
x=t^{2}, \quad y=t
$$

Ts Make a table, plot points, draw a curve through those points.

t	x	y
-2	4	-2
-1	1	-1
0	0	0
1	1	1
2	$\underbrace{}_{\text {plot these }}$	

Note: The arrows on the carve indicate the direction a particle would travel along the curve as t increases. This is called the orientation of the curve.

Think of t as time. Then the parametric equations give the position of a particle on the curve at time t.

At Be able to do this example (or a similar one) on the final!!!

