Graphing Techniques

Goal: To graph trig functions of the form $y=A f(B x-h)+k$

$$
f(x)=\sin x, \cos \cos x, \tan x, \ldots
$$

Recall: Let $A, B, k, h>0$ and $y=f(x)$

Function of the form... Transforms the graph of $\mathbf{y}=\mathbf{f}(\mathbf{x}) . .$.

Ex. Graph 1 full period of . . .
a)

$$
\begin{aligned}
& \text { full period of } \ldots \\
& y=2 \sin \left(x+\frac{\pi}{6}\right)
\end{aligned}
$$

helper: $y=2 \sin x$

$$
A_{m p}=|2|=2
$$

$$
P=2 \pi
$$

$$
\text { P.S. }=1 \text { eft } \frac{\pi}{6}=\frac{\downarrow}{6}
$$

b) $y=\cos \left(\frac{6}{2 x}-\frac{\pi}{2}\right)$
helper: $y=\cos 2 x$

$$
\begin{gathered}
\rho=\frac{2 \pi}{2}=\pi \\
A m p=1 \\
y=\cos \left(2 x-\frac{\pi}{2}\right) \\
=\cos \left[2\left(x-\frac{\pi}{2} \cdot \frac{1}{2}\right]\right.
\end{gathered}
$$

$$
\begin{array}{c|c}
=\cos \left[2\left(x-\frac{\pi}{2} \cdot \frac{1}{2}\right]\right. & 2 x-\frac{\pi}{2}=0 \\
=\cos \left[2\left(x-\left(\frac{\pi}{4}\right)\right]\right. & 2 x=\frac{\pi}{2} \\
\text { P.S. }=\frac{\pi}{4} & x=\frac{\pi}{4}<\frac{\pi}{4} \text { (right) }
\end{array}
$$

c) $y=3 \sin \left(\frac{\pi x}{2}(+1)-2\right.$
helper: $y=3 \sin \left(\frac{d}{2} x\right)$

$$
P=\frac{2 \pi}{\pi / 2}=2 \pi \cdot \frac{2}{\pi}=4
$$

$$
A_{m p}=|3|=3
$$

V.S:-2 (down 2)

PIS: $\frac{\pi}{2} x+1=0$

$$
\begin{aligned}
& \frac{\pi}{2} x=-1 \\
& x=-\frac{2}{\pi} \approx-0.636
\end{aligned}
$$

(ex) Let $y=-3 \cos (\underbrace{\left(2 x+\frac{\pi}{4}\right.}) \xrightarrow{\sim}$
helper (1) $y=\frac{3 \cos (2 x)}{3 \text { inverts }}$ helper $\theta=\hat{\theta} y \cos (2 x)$
Find helper $y=\Theta 3 \cos (2 x)$
a) Amplitude
c) phase shift

$$
A_{m p}=|-3|=3
$$

$$
2 x+\frac{\pi}{4}=0 \rightarrow 2 x=-\frac{\pi}{4} \rightarrow x=\frac{-\pi}{8}
$$

b) Period
d) vertical shift
b) Period

$$
\frac{2 \pi}{2}=\pi
$$

d) vertical shift
-s (down 5)
e) reflect?
reflection across x-axis (if graphing, <10 this first)
(ex) Graph two periods of $y=\frac{3}{2} \cot (2 \times \underbrace{-\frac{\pi}{2}})$
helper: $y=\frac{3}{2} \cot ((2) x)$

$$
\begin{aligned}
p & =\frac{\pi}{2} \\
2 x-\frac{\pi}{2} & =0 \\
2 x & =\frac{\pi}{2} \\
x & =-\frac{\pi}{4} \quad \text { right } \frac{\pi}{4}
\end{aligned}
$$

Ex. The graph of voltage from an alternating household circuit is shown below. Find an equation that gives voltage at time t. [Aufmann, number 68 p. 499, 8th ed]. helper

$$
v\left(v_{0}{ }^{1 t s}\right)
$$

Ex. Find the equation of the graph in red helper

$$
\begin{aligned}
& \text { Ier } \\
& y=A \sin (B x) \\
& p=\frac{4 \pi}{1}=\frac{2 \pi}{B} \\
& B=\frac{2 \pi}{4 \pi}=\left(\frac{1}{2}\right) \\
& \text { Amp }=\frac{m a x-\min }{2}=2
\end{aligned}
$$

