Goal:

- 1. To plot a complex number in the complex plane.
- 2. To convert between standard form and trig form.
- 3. To multiply and divide complex numbers in trig form.

(et) consider
$$Z = 2+3i$$
. Plot $Z = 10$
complex plane
$$Z = -2+3i = (-2,3)$$

$$Z = -2+3i = (-2$$

oet of |z|

If z = a + bi. Then | = | = \(\frac{2}{a} + b^2 \)

Trig form of
$$Z = a + bi$$

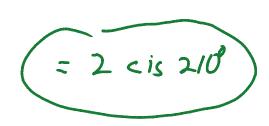
Trig form of $Z = a + bi$
 $A = r \cos\theta$
 $A = r \cos\theta + i r \sin\theta$
 $A = r \cos\theta + i r \sin\theta$
 $A = r \cos\theta + i \sin\theta$
 $A = r \cos\theta + i \sin\theta$
 $A = r \cos\theta + i \sin\theta$

Note: $tan\theta = \frac{b}{a}$

$$a = \sqrt{3}$$

$$b = -1$$

$$r = \sqrt{(-1)^2}$$


$$A = \sqrt{3}$$

$$A = \sqrt{$$

$$= \sqrt{3+1}$$

$$tan\theta = \frac{-1}{-\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}$$

$$tan \Theta = \frac{\sqrt{3}}{3}$$

 $\alpha = 30^{\circ}$
 $\Theta = 180 + 30^{\circ} = 210^{\circ}$

Product of Two complex #'s

$$z_1 = r_1 \left(\cos \theta_1 + i \sin \theta_1 \right) = r_1 \cos \theta_1$$

 $z_2 = r_2 \left(\cos \theta_2 + i \sin \theta_2 \right) = r_2 \cos \theta_2$

$$Z_{1}Z_{2} = r_{1}r_{2} \left(\cos\theta_{1} + i\sin\theta_{1}\right)\left(\cos\theta_{2} + i\sin\theta_{2}\right)$$

$$= r_{1}r_{2} \left[\cos\theta_{1}\cos\theta_{2} + i\sin\theta_{2}\cos\theta_{1} + i^{2}\sin\theta_{1}\cos\theta_{2} + i^{2}\sin\theta_{1}\sin\theta_{2}\right]$$

$$= r_{1}r_{2} \left[\cos \theta_{1} \cos \theta_{2} - \sin \theta_{1} \sin \theta_{2} \left(+ i \sin \theta_{1} \cos \theta_{2} + \sin \theta_{2} \cos \theta_{1} \right) \right]$$

$$= cos \left(\Theta_{1} + \Theta_{2} \right) \qquad sin \left(\Theta_{1} + \Theta_{2} \right)$$

$$= r_{1}r_{2} \left(\cos \left(\Theta_{1} + \Theta_{2} \right) + i \sin \left(\Theta_{1} + \Theta_{2} \right) \right)$$

$$= r_{1}r_{2} \left(\cos \left(\Theta_{1} + \Theta_{2} \right) + i \sin \left(\Theta_{1} + \Theta_{2} \right) \right)$$

$$= r_{1}r_{2} \left(\cos \left(\Theta_{1} + \Theta_{2} \right) + i \sin \left(\Theta_{1} + \Theta_{2} \right) \right)$$

a)
$$(2 \cdot cis 30^{\circ})(3 \cdot cis 225^{\circ})$$

= 6 $cis(30^{\circ} + 225^{\circ})$
= 6 $cis(255^{\circ})$

b)
$$5\left[\cos\left(\frac{2\pi}{5}\right) + i\sin\left(\frac{2\pi}{5}\right)\right] \cdot 2\left[\cos\frac{2\pi}{5} + i\sin\frac{2\pi}{5}\right]$$

$$= 10 \left[\cos \left(\frac{2\pi}{5} + \frac{2\pi}{5} \right) + \lambda \sin \left(\frac{2\pi}{5} + \frac{2\pi}{5} \right) \right]$$

$$= 10 \left[\cos \frac{4\pi}{5} + \lambda \sin \frac{4\pi}{5} \right]$$

$$= 10 \operatorname{cis} \left(\frac{4\pi}{5} \right)$$

Division

$$\frac{z_1}{z_2} = \frac{r_1 \operatorname{cis}\Theta_1}{r_2 \operatorname{cis}\Theta_2}$$
$$= \frac{r_1}{r_2} \operatorname{cis}(\Theta_1 - \Theta_2)$$

=
$$8 \text{ cis}(-120^{\circ})$$

= $8 \text{ cis}(240^{\circ})$
write in standard form
= $8(\cos 240^{\circ} + i\sin 240^{\circ})$
= $8(-\frac{1}{2} - i\sqrt{3})$