Number Sets and Absolute Value

Palomar College

2015

Objectives

- Introduce specific vocabulary
- Define common number sets and learn their symbols.
- · Classify a number into correct number sets.
- Find the absolute value of a real number.

A **set** is a collection of objects. Each of these objects is called an **element** of the set. We will be focusing on sets of numbers. The most common number sets have a name and a symbol that represents them.

One way to define a set of numbers is by listing them in **roster notation**. An example of a set in roster notation is {2, 4, 6}. This set has three elements. Another way to define a set is called **set-builder notation**, in this form we list rules for the numbers in the set instead of listing them. An example of set-builder notation is $\{x | x \text{ is an even number between } 1 \text{ and } 7.\}.$ This is also the set $\{2, 4, 6\}$.

A number written in the form $\frac{5}{6}$ is called a **fraction**. The top number is called the **numerator** and the bottom number is called the **denominator**. A fraction may refer to parts of a whole. The denominator tells us how many equal parts the whole is divided into and the numerator tells us how many of those parts we need.

 $\frac{5}{6}$ represents the shaded region of the circle because 5 of the 6 equal parts have been shaded.

Number Sets

- **Natural Numbers:** $\mathbb{N} = \{1, 2, 3, 4, 5, 6, \ldots\}$
- The three dots (. . .) after the 6 mean that the list goes on forever.
- Whole Numbers: $W = \{0, 1, 2, 3, 4, 5, ...\}$
- Whole numbers include all natural numbers and the number zero.
- Integers: $\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$
- All whole numbers are integers and so are all their negatives.
- **Rational Numbers:** $\mathbb{Q} = \{\frac{p}{q} | p \text{ and } q \text{ are integers and } q \neq 0\}$
- All fractions with integer numerators and denominators are a rational numbers, as long as the denominator is not 0. All integers are also rational numbers.
- **Irrational Numbers:** $\mathbb{I} = \{a | a \text{ is a decimal number that is not a rational number}\}$ Some common examples of irrational numbers are $\pi = 3.1415927...$ and $\sqrt{2} = 1.4142136...$ Irrational numbers have decimal expansions that do not terminate or repeat.
- **Real Numbers:** $\mathbb{R} = \{a | a \text{ is either rational or irrational}\}$
- Real numbers consist of all rational numbers and all irrational combined. All real numbers can be plotted on a real number line.

Classifying Numbers Example

List the numbers from the $\{-2, 0, \frac{1}{4}, -1.5, 112, -3, 11, \sqrt{3}\}$ that belong to each of the following sets:

- a) Natural N 112, 11
- b) Whole W 0, 112, 11
- c) Integer $\mathbb{Z} = -2, 0, 112, -3, 11$
- d) Rational \mathbb{Q} $-2, 0, \frac{1}{4}, -1.5, 112, -3, 11$
- e) Irrational \mathbb{I} $\sqrt{3}$
- f) Real \mathbb{R} $-2, 0, \frac{1}{4}, -1.5, 112, -3, 11, \sqrt{3}$

Let's Try It

List the numbers from the $\{\frac{1}{2}, 0, 1.5, -57, 3, 11, \sqrt{7}, -\pi\}$ that belong to each of the following sets:

- a) Natural N
- b) Whole ₩
- c) Integer \mathbb{Z}
- d) Rational Q
- e) Irrational I
- f) Real \mathbb{R}

Examples with Absolute Value

Find the absolute value of each number.

- a) |5| 5
- b) |-3| 3
- c) |0| 0

- e) |-4.2| 4.2 f) $|-\sqrt{3}|$ $\sqrt{3}$

Let's Try It

Find the absolute value of each number.

- a) |-8|
- b) |7|
- c) $-\frac{2}{5}$
- d) |0|
- e) $\sqrt{2}$
- f) |-3.8|

Absolute Value

The **absolute value** of a real number *a*, written |a|, is the distance between a and 0 on a real number line.

The absolute values of 2 and -2 are both 2. since they are both two units away from 0.

Practice

- 1) Tell which set or sets each number belongs to: \mathbb{N} , \mathbb{W} , \mathbb{Z} , \mathbb{Q} , \mathbb{I} , and \mathbb{R} .
 - a)8
- b) 0
- c) -2
- d) $\frac{2}{3}$
- $e) \sqrt{5}$
- f) -1.52
- 2) Plot each number in the list on the real number line. $-4, 0, 2.5, \frac{1}{2}, 5$

- 3) Find the absolute value of each number.
 - a) |-4|
- b) |5|
- c) $-\frac{5}{8}$
- d) |-1.75|
- e) $-\sqrt{7}$
- f) |7.2|

Number Sets and Absolute Value

Answers to Practice

- 1. Tell which set or sets each number belongs to: \mathbb{N} , \mathbb{W} , \mathbb{Z} , \mathbb{Q} , \mathbb{I} , and \mathbb{R} .
 - (a) 8 $\mathbb{N}, \mathbb{W}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$
 - (b) $0 \quad \mathbb{W}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$
 - (c) -2 \mathbb{Z} , \mathbb{Q} , \mathbb{R}
 - (d) $\frac{2}{3}$ \mathbb{Q} , \mathbb{R}
 - (e) $-\sqrt{5}$ I, \mathbb{R}
 - (f) -1.52 \mathbb{Q} , \mathbb{R}
- 2. Plot each number in the list on the real number line. $-4,0,2.5,\frac{1}{2},5$

- 3. Find the absolute value of each number.
 - (a) |-4| 4

(b) |5| 5

(c) $\left| -\frac{5}{8} \right|$ $\frac{5}{8}$

(d) |-1.75| 1.75

(e) $\left| -\sqrt{7} \right|$ $\sqrt{7}$

(f) |7.2| 7.2