Name:	Date:
Instructor:	Section:

Chapter 8 ROOTS, RADICALS, AND ROOT FUNCTIONS

8.3 Simplifying Radical Expressions

Lear	ning Object	ives			
1	Use the pr	oduct rule for radica	ls.		
2	Use the qu	otient rule for radica	als.		
3	Simplify radicals.				
4	4 Simplify products and quotients of radicals with different indexes.				
5	Use the Pythagorean theorem.				
6	Use the dis	stance formula.			
Key Terms					
Use the vocabulary terms listed below to complete each statement in exercises $1-3$.					
	index	radicand	hypotenuse	legs	
1.	In a right t	riangle, the side opp	oosite the right angle is	called the	

- 2. In the expression $\sqrt[4]{x^2}$, the "4" is the _____ and x^2 is the
- 3. In a right triangle, the sides that form the right angle are called the

Objective 1 Use the product rule for radicals.

Video Examples

Review these examples for Objective 1:

- **1.** Multiply. Assume that all variables represent positive real numbers.
 - a. $\sqrt{13} \cdot \sqrt{5}$ $\sqrt{13} \cdot \sqrt{5} = \sqrt{13 \cdot 5} = \sqrt{65}$ c. $\sqrt{5x} \cdot \sqrt{2yz}$ $\sqrt{5x} \cdot \sqrt{2yz} = \sqrt{10xyz}$

Now Try:

- 1. Multiply. Assume that all variables represent positive real numbers.
 - a. $\sqrt{2} \cdot \sqrt{7}$

c. $\sqrt{3} \cdot \sqrt{11mn}$

Date: Section:

- 2. Multiply. Assume that all variables represent positive real numbers.
 - a. $\sqrt[4]{2} \cdot \sqrt[4]{2x}$ $\sqrt[4]{2} \cdot \sqrt[4]{2x} = \sqrt[4]{2 \cdot 2x} = \sqrt[4]{4x}$ b. $\sqrt[3]{8x} \cdot \sqrt[3]{2y^2}$ $\sqrt[3]{8x} \cdot \sqrt[3]{2y^2} = \sqrt[3]{8x \cdot 2y^2} = \sqrt[3]{16xy^2}$ c. $\sqrt[5]{6r^2} \cdot \sqrt[5]{4r^2}$ $\sqrt[5]{6r^2} \cdot \sqrt[5]{4r^2} = \sqrt[5]{6r^2 \cdot 4r^2} = \sqrt[5]{24r^4}$ d. $\sqrt[5]{2} \cdot \sqrt[4]{6}$ cannot be simplified using th

 $\sqrt[5]{2} \cdot \sqrt[4]{6}$ cannot be simplified using the product rule for radicals, because the indexes (5 and 4) are different.

2. Multiply. Assume that all variables represent positive real numbers. **a.** $\sqrt[3]{3} \cdot \sqrt[3]{7}$ **b.** $\sqrt[3]{7x} \cdot \sqrt[3]{5y}$ **c.** $\sqrt[5]{4w} \cdot \sqrt[5]{2w^3}$

2.

3.

d. $\sqrt{3} \cdot \sqrt[3]{64}$

Objective 1 Practice Exercises

For extra help, see Examples 1–2 on page 499 of your text.

Multiply. Assume that variables represent positive real numbers.

1. $\sqrt{7x} \cdot \sqrt{6t}$ **1.** _____

$$2. \quad \sqrt[5]{6r^2t^3} \cdot \sqrt[5]{4r^2t}$$

 $3. \quad \sqrt{3} \cdot \sqrt[3]{7}$

Name:	Date:
Instructor:	Section:

Objective 2 Use the quotient rule for radicals.

Video Examples

Review these examples for Objective 2:

3. Simplify. Assume that all variables represent positive real numbers.

a.
$$\sqrt{\frac{64}{9}}$$

 $\sqrt{\frac{64}{9}} = \frac{\sqrt{64}}{\sqrt{9}} = \frac{8}{3}$
b. $\sqrt{\frac{5}{16}}$
 $\sqrt{\frac{5}{16}} = \frac{\sqrt{5}}{\sqrt{16}} = \frac{\sqrt{5}}{4}$
c. $\sqrt[3]{-\frac{27}{8}} = \frac{\sqrt{5}}{\sqrt{16}} = \frac{-3}{2} = -\frac{3}{2}$
 $\sqrt[3]{-\frac{27}{8}} = \frac{\sqrt[3]{-27}}{\sqrt[3]{8}} = \frac{-3}{2} = -\frac{3}{2}$
e. $\sqrt[5]{-\frac{a^3}{243}} = \frac{\sqrt[5]{a^3}}{\sqrt[3]{-243}} = \frac{\sqrt[5]{a^3}}{-3} = -\frac{\sqrt[5]{a^3}}{3}$
f. $\sqrt{\frac{z^4}{36}} = \frac{\sqrt{z^4}}{\sqrt{36}} = \frac{z^2}{6}$

Now Try:

3. Simplify. Assume that all variables represent positive real numbers.

a.
$$\sqrt{\frac{36}{49}}$$

b. $\sqrt{\frac{13}{81}}$
c. $\sqrt[3]{-\frac{343}{125}}$
e. $\sqrt[3]{-\frac{a^6}{125}}$
f. $\sqrt[4]{\frac{m}{81}}$

Objective 2 Practice Exercises

For extra help, see Example 3 on page 500 of your text.

Simplify each radical. Assume that variables represent positive real numbers.

4.
$$\sqrt[3]{\frac{27}{8}}$$
 4. _____

Date: Section:

 $\sqrt[5]{\frac{7x}{32}}$ 5.

6.
$$\sqrt[3]{-\frac{a^6}{125}}$$

Objective 3 Simplify radicals.		
Video Examples		
Review these examples for Objective 3:4. Simplify.	Now Try: 4. Simplify.	
a. $\sqrt{90}$	a. $\sqrt{84}$	
$\sqrt{90} = \sqrt{9 \cdot 10}$		
$=\sqrt{9}\cdot\sqrt{10}$		
$=3\sqrt{10}$		
b. $\sqrt{288}$	b. $\sqrt{162}$	
$\sqrt{288} = \sqrt{144 \cdot 2}$		
$=\sqrt{144}\cdot\sqrt{2}$		
$=12\sqrt{2}$		
c. $\sqrt{35}$	c. $\sqrt{95}$	
No perfect square (other than 1) divides into 35, so $\sqrt{35}$ cannot be simplified further.		
d. $\sqrt[3]{81}$	d. $\sqrt[3]{256}$	
$\sqrt[3]{81} = \sqrt[3]{27 \cdot 3} = \sqrt[3]{27} \cdot \sqrt[3]{3} = 3\sqrt[3]{3}$		
e. $-\sqrt[4]{3125}$	e. $-\sqrt[5]{512}$	
$-\sqrt[4]{3125} = -\sqrt[4]{5^5} = \sqrt[4]{5^4 \cdot 5}$		
$= -\sqrt[4]{5^4} \cdot \sqrt[4]{5}$		
$=-5\sqrt[4]{5}$		

5. Simplify. Assume that all variables represent positive real numbers.

a.
$$\sqrt{81x^3}$$

 $\sqrt{81x^3} = \sqrt{9^2 \cdot x^2 \cdot x} = 9x\sqrt{x}$
b. $\sqrt{56x^7y^6} = \sqrt{4 \cdot 14 \cdot (x^3)^2 \cdot x \cdot (y^3)^2}$
 $= 2x^3y^3\sqrt{14x}$
c. $\sqrt[3]{-270b^4c^8} = \sqrt[3]{(-27b^3c^6)(10bc^2)}$
 $= \sqrt[3]{-270b^4c^8} = \sqrt[3]{(-27b^3c^6)(10bc^2)}$
 $= -\sqrt[3]{-270b^4c^8} = \sqrt[3]{(-27b^3c^6)(10bc^2)}$
 $= -3bc^2\sqrt[3]{10bc^2}$
d. $-\sqrt[6]{448a^7b^7} = -\sqrt[6]{(64a^6b^6)(7ab)}$
 $= -\sqrt[6]{64a^6b^6} \cdot \sqrt[6]{7ab}$
 $= -2ab\sqrt[6]{7ab}$

- **6.** Simplify. Assume that all variables represent positive real numbers.
 - **a.** $\sqrt[24]{5^4}$ $\sqrt[24]{5^4} = (5^4)^{1/24} = 5^{4/24} = 5^{1/6} = \sqrt[6]{5}$ **c.** $\sqrt[8]{x^{12}}$ $\sqrt[8]{x^{12}} = (x^{12})^{1/8} = x^{12/8} = x^{3/2} = \sqrt{x^3}$ $= \sqrt{x^2 \cdot x} = \sqrt{x^2} \cdot \sqrt{x} = x\sqrt{x}$

5. Simplify. Assume that all variables represent positive real numbers.

a.
$$\sqrt{100y^3}$$

b.
$$\sqrt{48m^5r^9}$$

c.
$$\sqrt[3]{-32n^7t^5}$$

d.
$$-\sqrt[4]{405x^3y^9}$$

- 6. Simplify. Assume that all variables represent positive real numbers.
 - **a.** $\sqrt[12]{11^9}$

c. $\sqrt[24]{z^{30}}$

Date: Section:

Objective 3 Practice Exercises

For extra help, see Examples 4–6 on pages 501–502 of your text.

Simplify each radical. Assume that variables represent positive real numbers.

7.
$$\sqrt[42]{x^{28}}$$
 7. ______

 8. $\sqrt{8x^3y^6z^{11}}$
 8. ______

 9. $\sqrt[3]{1250a^5b^7}$
 9. ______

Objective 4 Simplify products and quotients of radicals with different indexes.

Video Examples

Re [.]	view this example for Objective 4:	w Try:
7.	Simplify $\sqrt{3} \cdot \sqrt[5]{6}$.	Simplify ∛3·∜7.
	Because the different indexes, 2 and 5, have least common multiple index of 10, we use rational exponents to write each radical as a tenth root. $\sqrt{3} = 3^{1/2} = 3^{5/10} = {}^{10}\sqrt{3^5} = {}^{10}\sqrt{243}$ ${}^{5}\sqrt{6} = 6^{1/5} = 6^{2/10} = {}^{10}\sqrt{6^2} = {}^{10}\sqrt{36}$ $\sqrt{3} \cdot {}^{5}\sqrt{6} = {}^{10}\sqrt{243} \cdot {}^{10}\sqrt{36}$ $= {}^{10}\sqrt{243} \cdot {}^{30}$ $= {}^{10}\sqrt{8748}$	

Objective 4 Practice Exercises

For extra help, see Example 7 on page 503 of your text.

Simplify each radical. Assume that variables represent positive real numbers.

10. $\sqrt{r} \cdot \sqrt[3]{r}$ **10.** _____

Date: Section:

11. $\sqrt[4]{2} \cdot \sqrt[8]{7}$

11. _____

12. $\sqrt{3} \cdot \sqrt[5]{64}$

12.			

Objective 5 Use the Pythagorean theorem.

Video Examples

Review this example for Objective 5:

8. Use the Pythagorean theorem to find the length of the unknown side of the triangle.

$$a = b^{25}$$

$$a^{2} + b^{2} = c^{2}$$

$$12^{2} + b^{2} = 25^{2}$$

$$144 + b^{2} = 625$$

$$b^{2} = 481$$

$$b = \sqrt{481}$$

Now Try:

8. Use the Pythagorean theorem to find the length of the unknown side of the triangle.

$$6 \underbrace{\begin{array}{c} & 18 \\ 90^{\circ} & a \end{array}}_{a}$$

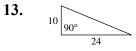
The length of the side is $\sqrt{481}$.

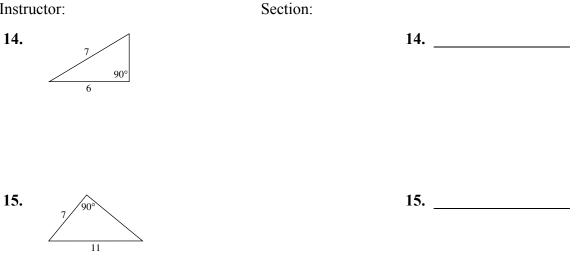
Objective 5 Practice Exercises

For extra help, see Example 8 on page 504 of your text.

Find the unknown length in each right triangle. Simplify the answer if necessary.

13. _____





Date:

Objective 6 Use the distance formula.

Video Examples

Review this example for Objective 6:

9. Find the distance between the points (2,-2) and (-6, 1).

Use the distance formula. Let $(x_1, y_1) = (2, -2)$

and
$$(x_2, y_2) = (-6, 1).$$

 $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
 $= \sqrt{(-6 - 2)^2 + [1 - (-2)]^2}$
 $= \sqrt{(-8)^2 + 3^2}$
 $= \sqrt{64 + 9}$
 $= \sqrt{73}$

Now Try:

9. Find the distance between the points (-1,-2) and (-4, 3).

Date: Section:

Objective 6 Practice Exercises

For extra help, see Example 9 on page 505 of your text.

Find the distance between each pair of points.

16. (3, 4) and (-1, -2)

16. _____

17. (-2,-3) and (-5, 1)

17. _____

18. (4, 2) and (3,-1)

18. _____