
Complex numbers and  
Trigonometric Identities

The shortest path between two truths in the real domain passes through the complex domain.

Jacques Hadamard



Simplicity in linearity

• In Mathematics, we know that the distributive property states:
• a(b + c) = ab + ac
• But why is this even true to begin with?
• Here is a visual proof where we can think of the real number values 

representing the lengths of rectangles and their products the area of 
their associated rectangles. 

• Even the proof for natural numbers takes effort. 
• Since 𝑚𝑚 ⋅ 𝑛𝑛 is just 𝑛𝑛 + 𝑛𝑛 + ⋯+ 𝑛𝑛, repeated 𝑚𝑚 times. Then by using 

the commutative  property: 𝑎𝑎 𝑏𝑏 + 𝑐𝑐 = 𝑏𝑏 + 𝑐𝑐 𝑎𝑎 = 𝑎𝑎 + 𝑎𝑎 + ⋯+ 𝑎𝑎
𝑏𝑏+𝑐𝑐 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

(𝑎𝑎 + 𝑎𝑎 + ⋯+ 𝑎𝑎 )
𝑏𝑏 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

+ (𝑎𝑎 + 𝑎𝑎 + ⋯+ 𝑎𝑎)
𝑐𝑐 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

= 𝑏𝑏 ⋅ 𝑎𝑎 + 𝑐𝑐 ⋅ 𝑎𝑎 = 𝑎𝑎𝑏𝑏 + 𝑏𝑏𝑐𝑐

https://math.stackexchange.com/questions/786066/prove-the-distributive-law-abc-abac-for-real-numbers

https://math.stackexchange.com/questions/786066/prove-the-distributive-law-abc-abac-for-real-numbers


Simplicity in linearity



Its definitively ALIVE!!!

• Previous theorem show how you will see in Calculus 1 how the 
derivative of two functions does behave linearly. 

• What other mathematical objects have this nice linear property?
• Lets take another result from calc 1, the definite integral



Simplicity in Linearity

• Linearity property of the definite integral



As expected…
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Lets go beyond calculus, and go into probability theory. Expect to 
see this in a statistics class (Math 120). 

The expected value of a random variable, intuitively, is the long-run 
average value of repetitions of the experiment it represents.



As expected… a proof

• For discrete random variables X and Y. By the basic definition of expected 
value,

• Note that we have never used any properties of independence in this proof, 
and thus linearity of expectation holds for all random variables!

• For continuous random variables, the proof is essentially the same except 
that the summations are replaced by integrals. 

https://brilliant.org/wiki/linearity-of-expectation/

https://brilliant.org/wiki/linearity-of-expectation/


Linear Transformations

• A Linear Transformation (or linear map) is a special type of function 
where:
 F(u + v) = F(u) + F(v)     and
 F(cv) = cF(v) for a constant/scalar c. 

These functions are extensively studied in Linear Algebra (Math 200) and get their 
name by always mapping a line into a line. 

The function f:ℝ2 → ℝ2

with f(x,y)=(2x,y) is a linear 
map. This function scales 
the x component of a vector by 
the factor 2.

The function is additive: It doesn't 
matter whether first vectors are 
added and then mapped or whether 
they are mapped and finally added: 
f(u+v)=f(u)+f(v)

The function is homogeneous: It 
doesn't matter whether a vector is 
first scaled and then mapped or 
first mapped and then 
scaled: f(cv)=cf(v)

https://en.wikipedia.org/wiki/Linear_map

http://mathworld.wolfram.com/LinearTransformation.html

https://en.wikipedia.org/wiki/Linear_map
http://mathworld.wolfram.com/LinearTransformation.html


Is everything linear?

• Can we apply this procedure universally, just because its easy?
• Lets consider a “freshman sum“ from math students, when requested 

to add fractions

• 2
7

+ 3
5
= 5
12

Right!!

• In reality this “mistake” leads us to interesting area and study of 
numbers called the Mediant 𝑎𝑎

𝑏𝑏
+ 𝑐𝑐

𝑑𝑑
= 𝑎𝑎+𝑐𝑐
𝑏𝑏+𝑑𝑑

.

• IF we do allow this new interesting relationships can occur

https://en.wikipedia.org/wiki/Mediant_(mathematics)
https://www.nctm.org/Publications/Mathematics-Teacher/2016/Vol110/Issue1/mt2016-08-18a/

https://en.wikipedia.org/wiki/Mediant_(mathematics)
https://www.nctm.org/Publications/Mathematics-Teacher/2016/Vol110/Issue1/mt2016-08-18a/


More on mediant

• Not todays topic, but want to entice your math curiosity, look at:
• Farey sequences 

• Stern-Brocot tree 

https://en.wikipedia.org/wiki/Farey_sequence

https://en.wikipedia.org/wiki/Stern%E2%80%93Brocot_tree

https://en.wikipedia.org/wiki/Farey_sequence
https://en.wikipedia.org/wiki/Stern%E2%80%93Brocot_tree


Fundamental Tragedy of algebra
• That sinister bug has raised his head,

• And like a germ he is starting to spread.

• Distributing exponents is the sign,

• That this bug is on the climb.

• Look at that student over there,

• Distributing exponents without a care.

• Please listen to your maker,

• Distributing exponents will bring the undertaker.

• Dear Lord please open your gates. 

• Being a math student was not his fate.

• Distributing exponents was his only sin.

• But that’s enough to do an algebra student in.

• An example, his demise should serve,

• For other students who haven’t heard, 

• Distributing exponents is a sin.

• It’s enough to do an algebra student in.

•
• Donald E. Brook

• Mt. San Antonio College

• 𝑎𝑎 + 𝑏𝑏 2 ≠ 𝑎𝑎2 + 𝑏𝑏2

•

• 𝑎𝑎2 + 𝑏𝑏2 ≠ 𝑎𝑎 + 𝑏𝑏
•
• 𝑎𝑎2 + 𝑏𝑏2 1/2 ≠ 𝑎𝑎 + 𝑏𝑏
•
• 𝑎𝑎−1 + 𝑏𝑏−1 ≠ 𝑎𝑎 + 𝑏𝑏 −1

•

• 𝑎𝑎−1 + 𝑏𝑏−1 ≠ − 1
𝑎𝑎+𝑏𝑏

•

• 3 𝑎𝑎3 + 𝑏𝑏3 ≠ 𝑎𝑎 + 𝑏𝑏
•
• 𝑎𝑎 + 𝑏𝑏 3 ≠ 𝑎𝑎3 + 𝑏𝑏3

•
• 𝑎𝑎 + 𝑏𝑏 4 ≠ 𝑎𝑎4 + 𝑏𝑏4

•

• 𝑎𝑎 + 𝑏𝑏
2
≠ 𝑎𝑎 + 𝑏𝑏



Fundamental Tragedy of linearity

• Linear breakdowns in other areas of mathematics:
 Algebra: logb(x) + logb(y) ≠ logb(x + y)
 Recall logb x=y ↔by=x
 Correct identity logb(x) + logb(y) = logb(xy), Proof: 

 Let bA=x and bB=y, then logb(xy)=logb(bA bB)=logb(bA+B )=A+B= logb(x) + logb(y)

 Logic: ¬(p∧q)≠ ¬p∧¬q, likewise ¬(p∨q)≠ ¬p∨¬q

 Rather by DeMorgans law ¬(p∧q)= ¬p∨¬q likewise ¬(p∨q)= ¬p∧¬q 

p q p∧q ¬(p∧q) ¬p∧¬q ¬p∨¬q

F F F T T T

F T F T F T

T F F T F T

T T T F F F

p q p∧q ¬(p∨q) ¬p∨¬q ¬p∧¬q

F F F T T T

F T F F T F

T F F F T F

T T T F F F



Fundamental Tragedy of linearity

• Linear breakdowns in other areas of mathematics:
 Sets: (𝐴𝐴 ∩ 𝐵𝐵)′ ≠ 𝐴𝐴′ ∩ 𝐵𝐵′ likewise (𝐴𝐴 ∪ 𝐵𝐵)′ ≠ 𝐴𝐴′ ∪ 𝐵𝐵′

 Rather by DeMorgans law (𝐴𝐴 ∩ 𝐵𝐵)′ ≠ 𝐴𝐴′ ∪ 𝐵𝐵′, proof below.
 Likewise  𝐴𝐴 ∪ 𝐵𝐵 ′ = 𝐴𝐴′ ∩ 𝐵𝐵′. Try proving this second version. 



Attempt at Linearity

What should cos 𝑥𝑥 + 𝑦𝑦 and sin 𝑥𝑥 + 𝑦𝑦 be? 
Do these trigonometric functions behave linearly? 
Is cos 𝑥𝑥 + 𝑦𝑦 = cos 𝑥𝑥 + cos 𝑦𝑦 and sin 𝑥𝑥 + 𝑦𝑦 = sin 𝑦𝑦 + sin 𝑦𝑦 ?

Try with some known values:

cos
𝜋𝜋
6

+
𝜋𝜋
3

= cos
𝜋𝜋
6

+ cos
𝜋𝜋
3

cos
3𝜋𝜋
6

= cos
𝜋𝜋
6

+ cos
𝜋𝜋
3

cos
𝜋𝜋
2

=
3

2
+

1
2

0 = 1+ 3
2

?

sin
𝜋𝜋
6

+
𝜋𝜋
3

= sin
𝜋𝜋
6

+ sin
𝜋𝜋
3

sin
3𝜋𝜋
6

= sin
𝜋𝜋
6

+ sin
𝜋𝜋
3

sin
𝜋𝜋
2

=
1
2

+
3

2

1 = 1+ 3
2

?



So that failed… let’s try distance!

Find cos 𝑥𝑥 − 𝑦𝑦 based on the unit circle. 



So that failed… let’s try distance!
Find cos 𝑥𝑥 − 𝑦𝑦 based on the unit circle. Label the coordinates of each point.

x
y

x – y 

(cos x, sin x)
(cos y, sin y)

(cos (x – y), sin (x – y))

(1, 0)

Figure 1 Figure 2



Find cos 𝑥𝑥 − 𝑦𝑦 based on the unit circle.

Distance between the two labeled points in Figure 1. 

𝑑𝑑 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑦𝑦 2 + 𝑐𝑐𝑖𝑖𝑛𝑛𝑥𝑥 − 𝑐𝑐𝑖𝑖𝑛𝑛𝑦𝑦 2

𝑑𝑑 = 𝑐𝑐𝑐𝑐𝑐𝑐2𝑥𝑥 − 2𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑦𝑦 + 𝑐𝑐𝑐𝑐𝑐𝑐2𝑦𝑦 + 𝑐𝑐𝑖𝑖𝑛𝑛2𝑥𝑥 − 2𝑐𝑐𝑖𝑖𝑛𝑛𝑥𝑥𝑐𝑐𝑖𝑖𝑛𝑛𝑦𝑦 + 𝑐𝑐𝑖𝑖𝑛𝑛2𝑦𝑦
𝑑𝑑 = 𝑐𝑐𝑐𝑐𝑐𝑐2𝑥𝑥 + 𝑐𝑐𝑖𝑖𝑛𝑛2𝑥𝑥 + 𝑐𝑐𝑐𝑐𝑐𝑐2𝑦𝑦 + 𝑐𝑐𝑖𝑖𝑛𝑛2𝑦𝑦 − 2𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑦𝑦 − 2𝑐𝑐𝑖𝑖𝑛𝑛𝑥𝑥𝑐𝑐𝑖𝑖𝑛𝑛𝑦𝑦
𝑑𝑑 = 1 + 1 − 2𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑦𝑦 − 2𝑐𝑐𝑖𝑖𝑛𝑛𝑥𝑥𝑐𝑐𝑖𝑖𝑛𝑛𝑦𝑦
𝑑𝑑 = 2 − 2𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑦𝑦 − 2𝑐𝑐𝑖𝑖𝑛𝑛𝑥𝑥𝑐𝑐𝑖𝑖𝑛𝑛𝑦𝑦
𝑑𝑑 = 2 − 2 𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑦𝑦 + 𝑐𝑐𝑖𝑖𝑛𝑛𝑥𝑥𝑐𝑐𝑖𝑖𝑛𝑛𝑦𝑦

Keep this in mind as we move to the next part. 



Find cos 𝑥𝑥 − 𝑦𝑦 based on the unit circle.
Distance between the two labeled points in Figure 2. 

𝑑𝑑 = 𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥 − 𝑦𝑦 − 1 2 + 𝑐𝑐𝑖𝑖𝑛𝑛 𝑥𝑥 − 𝑦𝑦 − 0 2

𝑑𝑑 = 𝑐𝑐𝑐𝑐𝑐𝑐2 𝑥𝑥 − 𝑦𝑦 − 2𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥 − 𝑦𝑦 + 1 + 𝑐𝑐𝑖𝑖𝑛𝑛2 𝑥𝑥 − 𝑦𝑦

𝑑𝑑 = 𝑐𝑐𝑐𝑐𝑐𝑐2 𝑥𝑥 − 𝑦𝑦 + 𝑐𝑐𝑖𝑖𝑛𝑛2 𝑥𝑥 − 𝑦𝑦 + 1 − 2𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥 − 𝑦𝑦

𝑑𝑑 = 1 + 1 − 2𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥 − 𝑦𝑦 = 2 − 2𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥 − 𝑦𝑦

Now compare this to the previous distance: 𝑑𝑑 = 2 − 2 𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑦𝑦 + 𝑐𝑐𝑖𝑖𝑛𝑛𝑥𝑥𝑐𝑐𝑖𝑖𝑛𝑛𝑦𝑦

Since the distances must be the same, we conclude that:
𝒄𝒄𝒄𝒄𝒄𝒄 𝒙𝒙 − 𝒚𝒚 = 𝒄𝒄𝒄𝒄𝒄𝒄𝒙𝒙𝒄𝒄𝒄𝒄𝒄𝒄𝒚𝒚 + 𝒄𝒄𝒔𝒔𝒔𝒔𝒙𝒙𝒄𝒄𝒔𝒔𝒔𝒔𝒚𝒚

Want 𝑐𝑐𝑖𝑖𝑛𝑛 𝑥𝑥 − 𝑦𝑦 , then just check the complement (cofunction Identity): 

𝒄𝒄𝒔𝒔𝒔𝒔 𝒙𝒙 − 𝒚𝒚 = 𝑐𝑐𝑐𝑐𝑐𝑐
𝜋𝜋
2 −

𝑥𝑥 − 𝑦𝑦 = 𝑐𝑐𝑐𝑐𝑐𝑐
𝜋𝜋
2 − 𝑥𝑥 − −𝑦𝑦 =

cos
𝜋𝜋
2 − 𝑥𝑥 cos −𝑦𝑦 + sin

𝜋𝜋
2 − 𝑥𝑥 sin(−𝑦𝑦) = 𝒄𝒄𝒔𝒔𝒔𝒔𝒙𝒙𝒄𝒄𝒄𝒄𝒄𝒄𝒚𝒚 − 𝒄𝒄𝒄𝒄𝒄𝒄𝒙𝒙𝒄𝒄𝒔𝒔𝒔𝒔𝒚𝒚



What about the other ones?

You can use a similar picture to 
graph addition, but in this case, 
you’ll need to think of a 
clockwise rotation of an angle, 
so one angle will be negative.

Summary: 
𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥 ± 𝑦𝑦 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑦𝑦 ∓ 𝑐𝑐𝑖𝑖𝑛𝑛𝑥𝑥𝑐𝑐𝑖𝑖𝑛𝑛𝑦𝑦

𝑐𝑐𝑖𝑖𝑛𝑛 𝑥𝑥 ± 𝑦𝑦 = 𝑐𝑐𝑖𝑖𝑛𝑛𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑦𝑦 ± 𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥𝑐𝑐𝑖𝑖𝑛𝑛𝑦𝑦



Deriving sum identity using SOHCAHTOA, and 
without the Unit circle.

http://mathworld.wolfram.com/TrigonometricAdditionFormulas.html

http://mathworld.wolfram.com/TrigonometricAdditionFormulas.html


http://mathworld.wolfram.com/TrigonometricAdditionFormulas.html

http://mathworld.wolfram.com/TrigonometricAdditionFormulas.html


Deriving sum identity using SOHCAHTOA, and 
without the Unit circle.

http://mathworld.wolfram.com/TrigonometricAdditionFormulas.html

http://mathworld.wolfram.com/TrigonometricAdditionFormulas.html


Deriving sum identity using SOHCAHTOA, and 
without the Unit circle.

http://mathworld.wolfram.com/TrigonometricAdditionFormulas.html
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Deriving sum identity using SOHCAHTOA, and 
without the Unit circle.
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Deriving sum identity using SOHCAHTOA, and 
without the Unit circle.
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Deriving sum identity using SOHCAHTOA, and 
without the Unit circle.
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Deriving sum identity using SOHCAHTOA, and 
without the Unit circle.

• Consider the small right triangle in the figure above, which gives

http://mathworld.wolfram.com/TrigonometricAdditionFormulas.html

http://mathworld.wolfram.com/TrigonometricAdditionFormulas.html


Deriving sum identity using SOHCAHTOA, and 
without the Unit circle.

• Now, the usual trigonometric definitions applied to the large right 
triangle give

http://mathworld.wolfram.com/TrigonometricAdditionFormulas.html

http://mathworld.wolfram.com/TrigonometricAdditionFormulas.html


Deriving sum identity using SOHCAHTOA, and 
without the Unit circle.

• Solving these two equations simultaneously for the variables sin(α+β) 
and cos(α +β) then immediately gives

http://mathworld.wolfram.com/TrigonometricAdditionFormulas.html

http://mathworld.wolfram.com/TrigonometricAdditionFormulas.html


Deriving sum identity using SOHCAHTOA, and 
without the Unit circle.

• These can be put into the familiar forms with the aid of the 
trigonometric identities

• which can be verified by direct multiplication.
• Plugging these back to the equations in the previous slide gives:

http://mathworld.wolfram.com/TrigonometricAdditionFormulas.html

http://mathworld.wolfram.com/TrigonometricAdditionFormulas.html


Other pictures



My eyes hurt

• Is there another way, that does not involve the unit circle with 
distance formula or ‘weird’ pictures. 

• Is there a way that doesn’t require long arithmetic, memorizing or 
remembering some picture, or remembering some method to create 
a picture that would work?

• Lets enter an imaginary word of opportunities.
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Leonhard Euler [1707-1783]

• Euler is considered the most 
prolific mathematician in 
history. (What about Erdős?)

• His contemporaries called 
him “analysis incarnate.”

• “He calculated without effort, 
just as men breathe or as 
eagles sustain themselves in 
the air.”

The Saga of Mathematics: A Brief History http://math.widulski.net/

https://en.wikipedia.org/wiki/Paul_Erd%C5%91s
http://math.widulski.net/
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Leonhard Euler [1707-1783]

•Euler was born in Basel, Switzerland, on April 
15, 1707.

•He received his first schooling from his father 
Paul, a Calvinist minister, who had studied 
mathematics under Jacob Bernoulli.

•Euler's father wanted his son to follow in his 
footsteps and, in 1720 at the age of 14, sent 
him to the University of Basel to prepare for 
the ministry. 

The Saga of Mathematics: A Brief History http://math.widulski.net/

http://math.widulski.net/
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Leonhard Euler [1707-1783]

• At the age of 15, he received his Bachelor’s degree.
• In 1723 at the age of 16, Euler completed his 

Master's degree in philosophy having compared and 
contrasted the philosophical ideas of Descartes and 
Newton. 

• His father demanded he study theology and he did, 
but eventually through the persuading of Johann 
Bernoulli, Jacob’s brother, Euler switched to 
mathematics.

The Saga of Mathematics: A Brief History http://math.widulski.net/

http://math.widulski.net/
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Leonhard Euler [1707-1783]

• Euler completed his studies at the University of Basel in 
1726. 

• He had studied many mathematical works including those by 
Varignon, Descartes, Newton, Galileo, von Schooten, Jacob 
Bernoulli, Hermann, Taylor and Wallis. 

• By 1727, he had already published a couple of articles on 
isochronous curves and submitted an entry for the 1727 
Grand Prize of the French Academy on the optimum 
placement of masts on a ship. 

The Saga of Mathematics: A Brief History http://math.widulski.net/

http://math.widulski.net/
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Leonhard Euler [1707-1783]

• Euler did not win but instead received an honorable 
mention.

• He eventually would recoup from this loss by 
winning the prize 12 times.

• What is interesting is that Euler had never been on 
a ship having come from landlocked Switzerland.

• The strength of his work was in the analysis.

The Saga of Mathematics: A Brief History http://math.widulski.net/

http://math.widulski.net/
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Leonhard Euler [1707-1783]

• Euler was in a sense the creator of modern mathematical 
expression.

• In terms of mathematical notation, Euler was the person 
who gave us: 

• π for pi 

•i for √−1

•∆y for the change in y
•f(x) for a function
• Σ for summation

The Saga of Mathematics: A Brief History http://math.widulski.net/

http://math.widulski.net/
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Leonhard Euler [1707-1783]

• To get an idea of the magnitude of Euler’s work it is 
worth noting that:

• Euler wrote more than 500 books and papers during 
his lifetime – about 800 pages per year.

• After Euler’s death, it took over forty years for the 
backlog of his work to appear in print. 

• Approximately 400 more publications.

The Saga of Mathematics: A Brief History http://math.widulski.net/

http://math.widulski.net/


40

Leonhard Euler [1707-1783]

• He published so many mathematics articles that his 
collected works Opera Omnia already fill 73 large 
volumes – tens of thousands of pages – with more 
volumes still to come. 

• More than half of the volumes of Opera Omnia deal 
with applications of mathematics – acoustics, 
engineering, mechanics, astronomy, and optical 
devices (telescopes and microscopes).

The Saga of Mathematics: A Brief History http://math.widulski.net/

http://math.widulski.net/


The number e and compound interest

• Invest $1
• Interest rate 100%

Interest applied each Sum at end of  the year

Year $2.00000

Half-year $2.25000

Quarter $2.44141

Month $2.61304

Week $2.69260

Day $2.71457

Hour $2.71813

Minute $2.71828

Second $2.71828

𝐴𝐴 = 𝑃𝑃 1 +
𝑟𝑟
𝑛𝑛

𝑛𝑛𝑡𝑡 “Compound interest is the most 
powerful force in the universe.”

Albert Einstein.

What about ‘continuous’ compounding?



The number e as a limit

𝑒𝑒 = lim
𝑛𝑛→∞

1 +
1
𝑛𝑛

𝑛𝑛

= 2.7182818284590452353602874...

https://en.wikipedia.org/wiki/E_(mathematical_constant)

So for continuous compounding, let x=n/r we would get

𝐴𝐴 = lim
𝑛𝑛→∞

𝑃𝑃 1 +
𝑟𝑟
𝑛𝑛

𝑛𝑛𝑡𝑡
=𝑃𝑃 ⋅ lim

𝑥𝑥→∞
1 +

1
𝑥𝑥

𝑥𝑥𝑥𝑥𝑡𝑡

= 𝑃𝑃 lim
𝑥𝑥→∞

1 +
1
𝑥𝑥

𝑥𝑥 𝑥𝑥𝑡𝑡

= 𝑃𝑃𝑒𝑒𝑥𝑥𝑡𝑡

https://en.wikipedia.org/wiki/E_(mathematical_constant)


Euler on complex numbers

Of  such numbers we may truly assert that 
they are neither nothing, nor greater than 

nothing, nor less than nothing, which 
necessarily constitutes them imaginary or 

impossible. 



Complex Numbers
William Rowan Hamilton 1805 - 1865

We define a complex number as a pair (a, b) of  real numbers.

http://www.gresham.ac.uk/lectures-and-events/eulers-exponentials
https://www.quantamagazine.org/the-imaginary-numbers-at-the-edge-of-reality-20181025/

http://www.gresham.ac.uk/lectures-and-events/eulers-exponentials
https://www.quantamagazine.org/the-imaginary-numbers-at-the-edge-of-reality-20181025/


Complex Numbers
William Rowan Hamilton 1805 - 1865

We define a complex number as a pair (a, b) of  real numbers.

They are added as follows: (a, b) + (c, d) = (a + c, b + d);

(1, 2) + (3, 4) = (4, 6)

http://www.gresham.ac.uk/lectures-and-events/eulers-exponentials
https://www.quantamagazine.org/the-imaginary-numbers-at-the-edge-of-reality-20181025/

http://www.gresham.ac.uk/lectures-and-events/eulers-exponentials
https://www.quantamagazine.org/the-imaginary-numbers-at-the-edge-of-reality-20181025/


Complex Numbers
William Rowan Hamilton 1805 - 1865

We define a complex number as a pair (a, b) of  real numbers.

They are added as follows: (a, b) + (c, d) = (a + c, b + d);

They are multiplied as follows: (a, b) x (c, d) = (ac - bd, ad + bc);

(1, 2) × (3, 4) = (3 – 8, 4 + 6) = (-5, 10)

http://www.gresham.ac.uk/lectures-and-events/eulers-exponentials
https://www.quantamagazine.org/the-imaginary-numbers-at-the-edge-of-reality-20181025/

http://www.gresham.ac.uk/lectures-and-events/eulers-exponentials
https://www.quantamagazine.org/the-imaginary-numbers-at-the-edge-of-reality-20181025/


Complex Numbers
William Rowan Hamilton 1805 - 1865

We define a complex number as a pair (a, b) of  real numbers.

They are added as follows: (a, b) + (c, d) = (a + c, b + d);

They are multiplied as follows: (a, b) x (c, d) = (ac - bd, ad + bc);

The pair (a, 0) then corresponds to the real number a

the pair (0, 1) corresponds to the imaginary number i

http://www.gresham.ac.uk/lectures-and-events/eulers-exponentials
https://www.quantamagazine.org/the-imaginary-numbers-at-the-edge-of-reality-20181025/

http://www.gresham.ac.uk/lectures-and-events/eulers-exponentials
https://www.quantamagazine.org/the-imaginary-numbers-at-the-edge-of-reality-20181025/


Complex Numbers
William Rowan Hamilton 1805 - 1865

We define a complex number as a pair (a, b) of  real numbers.

They are added as follows: (a, b) + (c, d) = (a + c, b + d);

They are multiplied as follows: (a, b) x (c, d) = (ac - bd, ad + bc);

The pair (a, 0) then corresponds to the real number a

the pair (0, 1) corresponds to the imaginary number i

Then (0, 1) x (0, 1) = (-1, 0),
which corresponds to the relation

i x i = i 2= - 1.



Representing Complex numbers 
geometrically

Caspar Wessel in 1799 

In this representation, called the 
complex plane, two axes are drawn 
at right angles – the real axis and 
the imaginary axis – and the 
complex number a + b −1 is 
represented by the point at a 
distance a in the direction of  the 
real axis and at height b in the 
direction of  the imaginary axis.

https://en.wikipedia.org/wiki/Complex_number

https://en.wikipedia.org/wiki/Complex_number


https://www.quantamagazine.org/the-octonion-math-that-could-underpin-physics-20180720/

https://www.quantamagazine.org/the-octonion-math-that-could-underpin-physics-20180720/


Complicated Extensions

https://en.wikipedia.org/wiki/Quaternion

https://www.quantamagazine.org/the-imaginary-numbers-at-the-edge-of-reality-20181025/

https://en.wikipedia.org/wiki/Quaternion
https://www.quantamagazine.org/the-imaginary-numbers-at-the-edge-of-reality-20181025/


https://en.wikipedia.org/wiki/Octonion

https://en.wikipedia.org/wiki/Octonion


Powers of the complex expression (1+iπ/n)n

• We can approximate numerically these complex powers without 
evaluating trigonometric functions

https://www.youtube.com/watch?v=-dhHrg-KbJ0

The exponential function ez can be defined as 
the limit of (1 + z/n)n, as n approaches infinity, and 
thus eiπ is the limit of (1 + iπ/n)n. In this animation n 
takes various increasing values from 1 to 100. The 
computation of (1 + iπ/n)n is displayed as the 
combined effect of n repeated multiplications in 
the complex plane, with the final point being the 
actual value of (1 + iπ/n)n. As n gets larger (1 + iπ/n)n 

approaches a limit of −1.

https://www.desmos.com/calculator/qtqlhrazd4

http://demonstrations.wolfram.com/ComplexPowerPlot/

https://www.youtube.com/watch?v=-dhHrg-KbJ0
https://www.desmos.com/calculator/qtqlhrazd4
http://demonstrations.wolfram.com/ComplexPowerPlot/


This animation depicts points moving along the 
graphs of the sine function (in blue) and the 
cosine function (in green) corresponding to a 
point moving around the unit circle

Source: http://www2.seminolestate.edu/lvosbury/AnimationsForTrigonometry.htm

http://www2.seminolestate.edu/lvosbury/AnimationsForTrigonometry.htm


𝑒𝑒𝑡𝑡𝑥𝑥 = cos 𝑥𝑥 + 𝑖𝑖 sin 𝑥𝑥

Three-dimensional visualization of Euler's formula. See also circular polarization.

https://betterexplained.com/articles/intuitive-
understanding-of-eulers-formula/

https://en.wikipedia.org/wiki/Circular_polarization
https://betterexplained.com/articles/intuitive-understanding-of-eulers-formula/


Tailor made for math

Borrowing results from calculus we can find the Taylor 
series expansions for the transcendental functions:

cos 𝑥𝑥 = 1 - 𝑥𝑥
2

2!
+ 𝑥𝑥

4

4!
- 𝑥𝑥

6

6!
+ 𝑥𝑥8

8!
- 𝑥𝑥

10

10!
+ 𝑥𝑥

12

12!
+ ⋅⋅⋅

sin 𝑥𝑥 = 𝑥𝑥 - 𝑥𝑥
3

3!
+ 𝑥𝑥

5

5!
- 𝑥𝑥

7

7!
+ 𝑥𝑥9

9!
- 𝑥𝑥

11

11!
+ 𝑥𝑥

13

13!
+ ⋅⋅⋅

𝑒𝑒𝑥𝑥 =1 + 𝑥𝑥 + 𝑥𝑥2

2!
+ 𝑥𝑥3

3!
+ 𝑥𝑥

4

4!
+ 𝑥𝑥

5

5!
+ 𝑥𝑥6

6!
+ 𝑥𝑥

7

7!
+ 𝑥𝑥

8

8!
+ ⋅⋅⋅

𝑥𝑥 is measured in radians
https://www.desmos.com/calculator/8ksvin4rua
https://en.wikipedia.org/wiki/Taylor_series

The exponential 
function ex (in blue), 
and the sum of the 
first n + 1 terms of its 
Taylor series at 0 (in 
red).

https://en.wikipedia.org/wiki/Taylor_series
https://en.wikipedia.org/wiki/Taylor_series
https://en.wikipedia.org/wiki/Exponential_function


𝑒𝑒𝑡𝑡𝑥𝑥 = cos 𝑥𝑥 + 𝑖𝑖 sin 𝑥𝑥

cos 𝑥𝑥 = 1 - 𝑥𝑥
2

2!
+ 𝑥𝑥

4

4!
- 𝑥𝑥

6

6!
+ 𝑥𝑥8

8!
- 𝑥𝑥

10

10!
+ 𝑥𝑥

12

12!
+ ⋅⋅⋅

𝑖𝑖 sin 𝑥𝑥 =𝑖𝑖𝑥𝑥 - 𝑖𝑖 𝑥𝑥3

3!
+ 𝑖𝑖 𝑥𝑥5

5!
- 𝑖𝑖 𝑥𝑥7

7!
+𝑖𝑖 𝑥𝑥

9

9!
- 𝑖𝑖 𝑥𝑥11

11!
+ 𝑖𝑖 𝑥𝑥13

13!
+ ⋅⋅⋅

http://www.gresham.ac.uk/lectures-and-events/eulers-exponentials

http://www.gresham.ac.uk/lectures-and-events/eulers-exponentials


𝑒𝑒𝑡𝑡𝑥𝑥 = cos 𝑥𝑥 + 𝑖𝑖 sin 𝑥𝑥

cos 𝑥𝑥 = 1 - 𝑥𝑥
2

2!
+ 𝑥𝑥

4

4!
- 𝑥𝑥

6

6!
+ 𝑥𝑥8

8!
- 𝑥𝑥

10

10!
+ 𝑥𝑥

12

12!
+ ⋅⋅⋅

𝑖𝑖 sin 𝑥𝑥 =𝑖𝑖𝑥𝑥 - 𝑖𝑖 𝑥𝑥3

3!
+ 𝑖𝑖 𝑥𝑥5

5!
- 𝑖𝑖 𝑥𝑥7

7!
+𝑖𝑖 𝑥𝑥

9

9!
- 𝑖𝑖 𝑥𝑥11

11!
+ 𝑖𝑖 𝑥𝑥13

13!
+ ⋅⋅⋅

Add to get

1 + 𝑖𝑖𝑥𝑥 - 𝑥𝑥
2

2!
- 𝑖𝑖 𝑥𝑥3

3!
+ 𝑥𝑥

4

4!
+ 𝑖𝑖 𝑥𝑥5

5!
- 𝑥𝑥

6

6!
- 𝑖𝑖 𝑥𝑥7

7!
+ 𝑥𝑥8

8!
+ 𝑖𝑖 𝑥𝑥

9

9!
⋅⋅⋅

http://www.gresham.ac.uk/lectures-and-events/eulers-exponentials
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𝑒𝑒𝑡𝑡𝑥𝑥 = cos 𝑥𝑥 + 𝑖𝑖 sin 𝑥𝑥

cos 𝑥𝑥 = 1 - 𝑥𝑥
2

2!
+ 𝑥𝑥

4

4!
- 𝑥𝑥

6

6!
+ 𝑥𝑥8

8!
- 𝑥𝑥

10

10!
+ 𝑥𝑥

12

12!
+ ⋅⋅⋅

𝑖𝑖 sin 𝑥𝑥 =𝑖𝑖𝑥𝑥 - 𝑖𝑖 𝑥𝑥3

3!
+ 𝑖𝑖 𝑥𝑥5

5!
- 𝑖𝑖 𝑥𝑥7

7!
+𝑖𝑖 𝑥𝑥

9

9!
- 𝑖𝑖 𝑥𝑥11

11!
+ 𝑖𝑖 𝑥𝑥13

13!
+ ⋅⋅⋅

Add to get

1 + 𝑖𝑖𝑥𝑥 - 𝑥𝑥
2

2!
- 𝑖𝑖 𝑥𝑥3

3!
+ 𝑥𝑥

4

4!
+ 𝑖𝑖 𝑥𝑥5

5!
- 𝑥𝑥

6

6!
- 𝑖𝑖 𝑥𝑥7

7!
+ 𝑥𝑥8

8!
+ 𝑖𝑖 𝑥𝑥

9

9!
⋅⋅⋅

Lets compare it with 

𝑒𝑒𝑡𝑡𝑥𝑥 = 1+ 𝑡𝑡𝑥𝑥
1!

+ (𝑡𝑡𝑥𝑥)2

2!
+ (𝑡𝑡𝑥𝑥)3

3!
+ (𝑡𝑡𝑥𝑥)4

4!
+ (𝑡𝑡𝑥𝑥)5

5!
+ (𝑡𝑡𝑥𝑥)6

6!
+ (𝑡𝑡𝑥𝑥)7

7!
+ ⋅⋅⋅

http://www.gresham.ac.uk/lectures-and-events/eulers-exponentials

http://www.gresham.ac.uk/lectures-and-events/eulers-exponentials


𝑒𝑒𝑡𝑡𝑥𝑥 = cos 𝑥𝑥 + 𝑖𝑖 sin 𝑥𝑥

Add to get

1 + 𝑖𝑖𝑥𝑥 - 𝑥𝑥
2

2!
- 𝑖𝑖 𝑥𝑥3

3!
+ 𝑥𝑥

4

4!
+ 𝑖𝑖 𝑥𝑥5

5!
- 𝑥𝑥

6

6!
- 𝑖𝑖 𝑥𝑥7

7!
+ 𝑥𝑥8

8!
+ 𝑖𝑖 𝑥𝑥

9

9!
⋅⋅⋅

which is 

𝑒𝑒𝑡𝑡𝑥𝑥 = 1+ 𝑡𝑡𝑥𝑥
1!

+ (𝑡𝑡𝑥𝑥)2

2!
+ (𝑡𝑡𝑥𝑥)3

3!
+ (𝑡𝑡𝑥𝑥)4

4!
+ (𝑡𝑡𝑥𝑥)5

5!
+ (𝑡𝑡𝑥𝑥)6

6!
+ (𝑡𝑡𝑥𝑥)7

7!
+ ⋅⋅⋅

Note: 𝑖𝑖2 = -1
𝑖𝑖3 = - 𝑖𝑖
𝑖𝑖4 = 1
𝑖𝑖5 = 𝑖𝑖 and so on

http://www.gresham.ac.uk/lectures-and-events/eulers-exponentials

http://www.gresham.ac.uk/lectures-and-events/eulers-exponentials


Euler’s formula in Introductio, 1748

From which it can be 
worked out in what way 
the exponentials of  
imaginary quantities can 
be reduced to the sines
and cosines of  real arcs

http://www.gresham.ac.uk/lectures-and-events/eulers-exponentials

http://www.gresham.ac.uk/lectures-and-events/eulers-exponentials


𝑒𝑒𝑡𝑡𝑥𝑥 = cos 𝑥𝑥 + 𝑖𝑖 sin 𝑥𝑥

Now that we have the basics, let’s check how it works:

• 𝑒𝑒𝑡𝑡
𝜋𝜋
3 = cos 𝜋𝜋

3
+ 𝑖𝑖 sin 𝜋𝜋

3
= 1

2
+ 3

2
𝑖𝑖. 

• This corresponds to the point 1
2

, 3
2

on the unit circle. 

Now if  we set 𝑥𝑥 equal to π
𝑒𝑒𝑡𝑡π = cos π+ 𝑖𝑖 sin π

and use cos π = -1 and sin π = 0 giving

𝑒𝑒𝑡𝑡π = -1
or

𝒆𝒆𝒔𝒔𝝅𝝅 + 1 = 0
http://www.gresham.ac.uk/lectures-and-events/eulers-exponentials

http://www.gresham.ac.uk/lectures-and-events/eulers-exponentials


𝑒𝑒𝑡𝑡𝜋𝜋 + 1 = 0
This links five of the most important constants in mathematics:

• 0 is the additive identity, which when added to any number leaves the number 
unchanged

• 1 is the multiplicative identity, which multiplied by any number leaves the 
number unchanged

• e of the exponential function which we have defined before and base of the 
natural logarithms

• 𝜋𝜋 which is the ratio of a circle’s circumference to its diameter

• i is the imaginary unit, which is the square root of -1 

• Richard Feynman, an incredibly famous physicist, claimed this was the jewel of 
mathematics. Some have written that because of the innate beauty and 
simplicity of this equation, that Euler used it as a proof that god must exist. 



𝑒𝑒𝑡𝑡𝑥𝑥 = cos 𝑥𝑥 + 𝑖𝑖 sin 𝑥𝑥

Futher unexpected results: if  we raise the imaginary unit to itself  as a power, the 
answer is a REAL number.

Set 𝑥𝑥 equal to π/2 and use cos π/2 = 0 and sin π/2 = 1
Then raise both sides to the power of  i.

𝑖𝑖𝑡𝑡 = (𝑒𝑒𝑡𝑡(𝜋𝜋/2))𝑡𝑡= 𝑒𝑒𝑡𝑡∗𝑡𝑡𝜋𝜋/2 = 𝑒𝑒−𝜋𝜋/2 =

𝑒𝑒𝜋𝜋 −1/2 = 1
𝑡𝑡𝜋𝜋

=0.207879576350…

https://www.youtube.com/watch?v=9tlHQOKMHGA

http://www.gresham.ac.uk/lectures-and-events/eulers-exponentials

https://www.youtube.com/watch?v=9tlHQOKMHGA
http://www.gresham.ac.uk/lectures-and-events/eulers-exponentials


𝑒𝑒𝑡𝑡𝑥𝑥 = cos 𝑥𝑥 + 𝑖𝑖 sin 𝑥𝑥

Set 𝑥𝑥 equal to π/2 and use cos π/2 = 0 and sin π/2 = 1
Then raise both sides to the power of  i.

𝑖𝑖𝑡𝑡 = 1
𝑡𝑡𝜋𝜋

=0.207879576350…

“… we have not the slightest idea of  what this equation means , but we may be 
certain that it means something very important”

Benjamin Peirce

http://www.gresham.ac.uk/lectures-and-events/eulers-exponentials

http://www.gresham.ac.uk/lectures-and-events/eulers-exponentials


Why is this formula so powerful?

𝑒𝑒𝑡𝑡 𝑥𝑥+𝑦𝑦 = cos 𝑥𝑥 + 𝑦𝑦 + 𝑖𝑖 sin 𝑥𝑥 + 𝑦𝑦 (1)

𝑒𝑒𝑡𝑡 𝑥𝑥+𝑦𝑦 = 𝑒𝑒𝑡𝑡𝑥𝑥𝑒𝑒𝑡𝑡𝑦𝑦

𝑒𝑒𝑡𝑡 𝑥𝑥+𝑦𝑦 = cos 𝑥𝑥 + 𝑖𝑖 sin 𝑥𝑥 cos 𝑦𝑦 + 𝑖𝑖 sin 𝑦𝑦

𝑒𝑒𝑡𝑡 𝑥𝑥+𝑦𝑦 = cos 𝑥𝑥 cos 𝑦𝑦 + 𝑖𝑖 sin 𝑥𝑥 cos 𝑦𝑦 + 𝑖𝑖 sin 𝑦𝑦 cos 𝑥𝑥 + 𝑖𝑖2 sin 𝑥𝑥 sin 𝑦𝑦

𝑒𝑒𝑡𝑡 𝑥𝑥+𝑦𝑦 = cos 𝑥𝑥 cos 𝑦𝑦 + 𝑖𝑖 sin 𝑥𝑥 cos 𝑦𝑦 + 𝑖𝑖 sin 𝑦𝑦 cos 𝑥𝑥 − sin 𝑥𝑥 sin 𝑦𝑦

𝑒𝑒𝑡𝑡 𝑥𝑥+𝑦𝑦 = cos 𝑥𝑥 cos 𝑦𝑦 − sin 𝑥𝑥 sin 𝑦𝑦 + 𝑖𝑖 sin 𝑥𝑥 cos 𝑦𝑦 + sin 𝑦𝑦 cos 𝑥𝑥 (2)

At this point, we will need to equate the real parts and the imaginary parts of the two 
equations. 



Why is this formula so powerful?

𝑒𝑒𝑡𝑡 𝑥𝑥+𝑦𝑦 = cos 𝑥𝑥 + 𝑦𝑦 + 𝑖𝑖 sin 𝑥𝑥 + 𝑦𝑦

𝑒𝑒𝑡𝑡 𝑥𝑥+𝑦𝑦 = cos 𝑥𝑥 cos 𝑦𝑦 − sin 𝑥𝑥 sin 𝑦𝑦 + 𝑖𝑖 sin 𝑥𝑥 cos 𝑦𝑦 + sin 𝑦𝑦 cos 𝑥𝑥

Once you do this, you can see two identities with just one quick expansion of the 
distributive property:
• Red (Real):  cos 𝑥𝑥 + 𝑦𝑦 = cos 𝑥𝑥 cos 𝑦𝑦 − sin 𝑥𝑥 sin 𝑦𝑦
• Green (Imaginary):  sin 𝑥𝑥 + 𝑦𝑦 = sin 𝑥𝑥 cos 𝑦𝑦 + sin 𝑦𝑦 cos 𝑥𝑥

You could continue doing this with 𝑒𝑒𝑡𝑡 𝑥𝑥−𝑦𝑦 as well; no pictures needed, and very 
little algebra. As a bonus, the derivation is extremely quick, and you get two 
formulas each time!



Why is this formula so powerful?

What about other identities? Maybe Even/Odd?
𝑒𝑒𝑡𝑡 −𝑥𝑥 = cos −𝑥𝑥 + 𝑖𝑖 sin −𝑥𝑥
𝑒𝑒𝑡𝑡 −𝑥𝑥 = 𝑒𝑒−𝑡𝑡𝑥𝑥 =

1
𝑒𝑒𝑡𝑡𝑥𝑥

=
1

cos 𝑥𝑥 + 𝑖𝑖 sin 𝑥𝑥
Multiply by the complex conjugate. 

1
cos 𝑥𝑥 + 𝑖𝑖 sin 𝑥𝑥

cos 𝑥𝑥 − 𝑖𝑖 sin 𝑥𝑥
cos 𝑥𝑥 − 𝑖𝑖 sin 𝑥𝑥

= cos 𝑥𝑥 −𝑡𝑡 sin 𝑥𝑥
cos2 𝑥𝑥 + sin2 𝑥𝑥

= cos 𝑥𝑥 + 𝑖𝑖 −sin 𝑥𝑥

So this means that cos −𝑥𝑥 = cos 𝑥𝑥 and sin −𝑥𝑥 = −sin 𝑥𝑥

No pictures… just a little algebra!



Application to Trigonometric Identities

What about other identities?

𝑒𝑒𝑡𝑡2𝑖𝑖 = cos 2𝜃𝜃 + 𝑖𝑖 sin 2𝜃𝜃

On the other hand,
𝑒𝑒𝑡𝑡2𝑖𝑖 = 𝑒𝑒𝑡𝑡𝑖𝑖

2
= cos𝜃𝜃 + 𝑖𝑖 sin𝜃𝜃 2

= cos2 𝜃𝜃 − sin2 𝜃𝜃 + 𝑖𝑖 2 cos𝜃𝜃 sin𝜃𝜃

Equating real and imaginary parts of the two expressions yield
𝑡𝑡ℎ𝑒𝑒 𝑑𝑑𝑐𝑐𝑑𝑑𝑏𝑏𝑑𝑑𝑒𝑒 𝑎𝑎𝑛𝑛𝑎𝑎𝑑𝑑𝑒𝑒 identities:

cos 2𝜃𝜃 = cos2 𝜃𝜃 − sin2 𝜃𝜃
sin 2𝜃𝜃 = 2 cos𝜃𝜃 sin𝜃𝜃
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Application to Trigonometric Identities (cont.)

In general,
𝑒𝑒𝑡𝑡𝑛𝑛𝑖𝑖 = cos𝑛𝑛 𝜃𝜃 + 𝑖𝑖 sin𝑛𝑛 𝜃𝜃 = 𝑒𝑒𝑡𝑡𝑖𝑖 𝑛𝑛 = cos𝜃𝜃 + 𝑖𝑖 sin𝜃𝜃 𝑛𝑛

Expand using binomial theorem,
then equate real and imaginary parts
to obtain new identities.

𝑒𝑒𝑡𝑡𝑖𝑖 = cos 𝑧𝑧 + 𝑖𝑖 sin 𝑧𝑧
𝑒𝑒−𝑡𝑡𝑖𝑖 = cos 𝑧𝑧 − 𝑖𝑖 sin 𝑧𝑧

⇒ cos 𝑧𝑧 =
𝑒𝑒𝑡𝑡𝑖𝑖 + 𝑒𝑒−𝑡𝑡𝑖𝑖

2
, sin 𝑧𝑧 =

𝑒𝑒𝑡𝑡𝑖𝑖 − 𝑒𝑒−𝑡𝑡𝑖𝑖

2𝑖𝑖

⇒ cos 𝑖𝑖𝑧𝑧 =
𝑒𝑒𝑖𝑖 + 𝑒𝑒−𝑖𝑖

2
= cosh 𝑧𝑧 , sin 𝑖𝑖𝑧𝑧 = −

𝑒𝑒𝑖𝑖 − 𝑒𝑒−𝑖𝑖

2𝑖𝑖
= 𝑖𝑖 sinh 𝑧𝑧

Connecting them to the hyperbolic cosine and hyperbolic sine

70
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DeMoivre’s Theorem

71

θ

2 kθ π− 2 kθ π+

x

y

z z

𝑧𝑧𝑛𝑛 = 𝑟𝑟𝑒𝑒𝑡𝑡𝑖𝑖 𝑛𝑛 = 𝑟𝑟𝑛𝑛𝑒𝑒𝑡𝑡𝑛𝑛𝑖𝑖 = 𝑟𝑟𝑛𝑛 cos𝑛𝑛 𝜃𝜃 + 𝑖𝑖 sin𝑛𝑛 𝜃𝜃 = 𝑟𝑟𝑛𝑛∠𝑛𝑛𝜃𝜃

https://en.wikipedia.org/wiki/De_Moivre%27s_formula

https://en.wikipedia.org/wiki/De_Moivre's_formula


Roots of a Complex Number

𝑧𝑧𝑛𝑛 = 𝑟𝑟𝑒𝑒𝑡𝑡𝑖𝑖 𝑛𝑛 = 𝑟𝑟𝑛𝑛𝑒𝑒𝑡𝑡𝑛𝑛𝑖𝑖 = 𝑟𝑟𝑛𝑛 cos𝑛𝑛 𝜃𝜃 + 𝑖𝑖 sin𝑛𝑛 𝜃𝜃 = 𝑟𝑟𝑛𝑛∠𝑛𝑛𝜃𝜃 (DeMoivre′s Theorem)

Applies also for 𝑛𝑛 not an integer, but in this case, the result

Example:𝑛𝑛 th root of a complex number:
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Roots of a Complex Number (cont.)

−8𝑖𝑖
1
3 = �

3 − 𝑖𝑖,
2𝑖𝑖,

− 3 − 𝑖𝑖

Note that the 𝑛𝑛 th root of 𝑧𝑧 can also be expressed in terms

z

x

y

8i−

u

v
w

𝑤𝑤 = 𝑧𝑧1/3 = −8𝑖𝑖 1/3

Re

Im

1 0∠ °

1 120∠ °

1 240∠ °
Cube root 
of unity
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𝑤𝑤 = 𝑑𝑑 + 𝑖𝑖𝑖𝑖



Could we do more?

Heck yes! We could use this to find the sum to product formulas, but they require 
the ability to remember a substitution in the middle of the problem. These types 
of substitutions do come up in calculus, but we’ll leave them off for now. 

What kind of substitutions? 

When you look at 𝑥𝑥, you probably don’t immediately think 𝑥𝑥 = 𝑥𝑥 + 0.

Further, you probably don’t think 𝑥𝑥 + 0 = 𝑥𝑥 + 𝑦𝑦
2
− 𝑦𝑦

2
, right?

Oh, and once you do think about these, do you immediately think:
𝑥𝑥 + 𝑦𝑦

2
− 𝑦𝑦

2
= 𝑥𝑥

2
+ 𝑥𝑥

2
+ 𝑦𝑦

2
− 𝑦𝑦

2
= 𝑥𝑥

2
+ 𝑦𝑦

2
+ 𝑥𝑥

2
− 𝑦𝑦

2
= 𝑥𝑥+𝑦𝑦

2
+ 𝑥𝑥−𝑦𝑦

2
.  

Well, those are the types of substitutions needed for the sum-to-product formulas. 



Why use it?

Euler’s formula is a tool you can use, but don’t have to. Like many things in 
math, it is extremely useful at times and not as useful in other situations. 

Try it out. As you get comfortable with it, you may find some very interesting 
results! 
Bonus, this opens up a whole new world. Indeed, if 𝑒𝑒𝑡𝑡𝜋𝜋 = −1, which we 
confirmed that it did on an earlier slide, then we could rewrite this using 
logarithms: 𝑒𝑒𝑡𝑡𝜋𝜋 = −1 ↔ 𝑑𝑑𝑛𝑛 −1 = 𝑖𝑖𝜋𝜋

So logarithms could be defined over negative and even complex numbers if we 
allowed complex number outputs. Test this on your calculator in complex 
mode to see the result. Back when covering logarithms, the domain was 
restricted to all non-negative real numbers… but that was needed to get the 
result to be a real number. Expanding our definition/domain will allow us to do 
MORE, not less.  Now, go explore for yourselves!

https://en.wikipedia.org/wiki/Complex_logarithm
https://math.stackexchange.com/questions/2089690/log-of-a-negative-number

https://en.wikipedia.org/wiki/Complex_logarithm
https://math.stackexchange.com/questions/2089690/log-of-a-negative-number


How Important are the Addition Formulas?

Back in the 1950s, Professor Hans Rademacher* showed that all of 
trigonometry could be developed with just two functions that he called 
“C” and “S” where:

1. 𝐶𝐶 𝑥𝑥 − 𝑦𝑦 = 𝐶𝐶 𝑥𝑥 𝐶𝐶 𝑦𝑦 + 𝑆𝑆 𝑥𝑥 𝑆𝑆 𝑦𝑦
2. 𝑆𝑆 𝑥𝑥 − 𝑦𝑦 = 𝑆𝑆 𝑥𝑥 𝐶𝐶 𝑦𝑦 − 𝑆𝑆 𝑥𝑥 𝐶𝐶 𝑦𝑦
3. lim

𝑥𝑥→0+
𝑆𝑆 𝑥𝑥
𝑥𝑥

= 1

Those of you who have taken calculus may recognize (3) as one of the 
most important limits in calculus, necessary for the formulation of 
trigonometric derivatives. 
*Mathematics Teacher Vol L (January 1957) pp. 45-48.
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Lets raise the roof!

Recall:

𝑒𝑒𝑥𝑥 = 1 + 𝑥𝑥 +
𝑥𝑥2

2!
+
𝑥𝑥3

3!
+ ⋯ = �

𝑛𝑛=0

∞
𝑥𝑥𝑛𝑛

𝑛𝑛!
Define extension to complex variable(𝑥𝑥 → 𝑧𝑧 = 𝑥𝑥 + 𝑖𝑖𝑦𝑦):

𝑒𝑒𝑖𝑖 ≡ 1 + 𝑧𝑧 +
𝑧𝑧2

2!
+
𝑧𝑧3

3!
+ ⋯ = �

𝑛𝑛=0

∞
𝑧𝑧𝑛𝑛

𝑛𝑛!
(converges for all 𝑧𝑧)

⇒ 𝑒𝑒𝑡𝑡𝑖𝑖 = �
𝑛𝑛=0

∞
𝑖𝑖𝜃𝜃 𝑛𝑛

𝑛𝑛! = 1 −
𝜃𝜃2

2! +
𝜃𝜃4

4! −⋯+ 𝑖𝑖 𝜃𝜃 −
𝜃𝜃3

3! +
𝜃𝜃5

5! −⋯

= cos𝜃𝜃 + 𝑖𝑖 sin𝜃𝜃
⇒ 𝑒𝑒𝑡𝑡𝑖𝑖 = cos𝜃𝜃 + 𝑖𝑖 sin𝜃𝜃 𝑒𝑒−𝑡𝑡𝑖𝑖 = cos𝜃𝜃 − 𝑖𝑖 sin𝜃𝜃
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http://mathworld.wolfram.com/ComplexExponentiation.html

https://brilliant.org/wiki/complex-exponentiation/

http://mathworld.wolfram.com/ComplexExponentiation.html
https://brilliant.org/wiki/complex-exponentiation/


Further connections
In Calculus 2 (Math 141) you will see Taylor and McLaurin series. Used  
to confirm Euler’s formula 𝑒𝑒𝑡𝑡𝑥𝑥 = cos 𝑥𝑥 + 𝑖𝑖 sin 𝑥𝑥 . 

In Discrete Math (Math 245) you can prove that the previous formulas 
are true for all values of n, using formal mathematical induction. 

Calc I and II (Math 140 and 141) often must substitute in power 
reduction formulas for powers of trigonometric functions. 

http://spikedmath.com/297.html

http://spikedmath.com/297.html
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