
Infinity and its 
cardinalities
No one shall expel us from the Paradise 
that Cantor has created. David Hilbert



The whole difficulty of the subject lies in the 
necessity of thinking in an unfamiliar way, and 
in realizing that many properties which we 
have thought inherent in number are in fact 
peculiar to finite numbers. If this is 
remembered, the positive theory of 
infinity...will not be found so difficult as it is to 
those who cling obstinately to the prejudices 
instilled by the arithmetic which is learnt in 
childhood. Bertrand Russell (Salmon 1970, 58)
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How to use the concept of infinity 
coherently



In the nineteenth century mathematics experienced a 
movement towards a progressively abstract style with an 
increased emphasis on putting itself on a sound and rigorous 
basis and on examining its foundations. This movement 
happened in the calculus, algebra and geometry.
In the 1820s the French mathematician Cauchy, the most 
prolific mathematician of the century, made a major advance 
in making the calculus rigorous by clarifying the concept of a 
limit. This idea of a limit is needed in the calculus, for 
example, where we have the ratio of two quantities and we 
want to see what happens to this ratio as both quantities 
move simultaneously towards zero so becoming infinitely 
small. 
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19th century mathematics



It was later in the century that the German 
mathematician, Weierstrass, gave a mathematically 
and logical solid definition of a limit and it is his 
definition of a limit that we use today and on which 
the calculus is founded.

However, as often happens, the resolution of one 
problem drew attention to another problem.  It 
turned out that getting a sound definition of a limit 
necessitated a rigorous definition of the real 
numbers which in turn led to the study of infinite 
sets by Cantor. 4

19th century mathematics



Set: any collection into a whole M of definite and 
separate objects m of our intuition or of our thought

Broadly speaking a set is a collection of objects. 

Examples:
A={1, 3, 4, 6, 8}
B={1, 2, 3, …, 66}
C={2, 4, 6, 8, …} 
D={n ∈ ℤ | n is even}
E={x ∈ ℕ | x is a prime number ≤ 106}
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Basic Set Theory



Definition: Two sets are equal if and only if 
they have the same elements. 

Therefore if A and B are sets, then A and B are 
equal if and only if                                         . 
We write A = B if A and B are equal sets. 
For example, in set notation order and repetition 
does not matter since:

{1,3,5}   = {3, 5, 1}
{1,5,5,5,3,3,1} = {1,3,5}
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Set Equality



The number of elements in a set is called the 
cardinal number, or cardinality of the set.

The symbol n(A), read “n of A,” represents the 
cardinal number of set A.

7

Cardinality



Find the cardinal number of each set.
a)   K = {a, l, g, e, b, r}
b)  M = {0} 
c)  C = { 13, 14, 15,…,22, 23} 

Solution
a)  n(K) = 6
b)  n(M) = 1
c)  n(C) = 11
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Cardinality



If the cardinal number of a set is a particular 
whole number, we call that set a finite set.

Whenever a set is so large that its cardinal 
number is not found among the whole numbers, 
we call that set an infinite set. This is Intuitive 
but an informal definition.
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Finite and Infinite Sets



“There are as many squares as there are numbers because they are just as 
numerous as their roots.” — Galileo Galilei, 1632

Consider the set of natural numbers Ν = {1, 2, 3, 4, …} and the set of perfect 
squares (i.e. the squares of the naturals) S = {1, 4, 9, 16, 25, …}.  After careful 
thought, Galileo produced the following contradictory statements regarding 
these two sets:

1 – While some natural numbers are perfect squares, some are clearly not. 
Hence the set N must be more numerous than the set S, or |N|>|S|.

2 – Since for every perfect square there is exactly one natural that is its 
square root, and for every natural there is exactly one perfect square, it 
follows that S and N are equinumerous, or |N|=|S|.
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Galileo’s Paradox of Equinumerosity



Here, Galileo’s exact matching of the naturals with the perfect squares 
constitutes an early use of a one-to-one correspondence between sets – the 
conceptual basis for Cantor’s theory of sets.  

To resolve the paradox, Galileo concluded that the concepts of “less,” “equal,” 
and “greater” were inapplicable to the cardinalities of infinite sets such 
as S and N, and could only be applied to finite sets.

In fact, Cantor would prove that, in general, this is not true.  He showed that 
some infinite sets have a greater cardinality than others, thus implying the 
existence of different “sizes” for infinity. 11

Galileo’s Paradox of Equinumerosity



Set A is equivalent to set B if and only if n(A) = n(B).

Example:
D={ a, b, c }; E={apple, orange, pear}
n(D) = n(E) = 3
So set A is equivalent to set B. 
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Equivalent Sets



Any sets that are equal must also be 
equivalent.

Not all sets that are equivalent are equal.

Example: D ={ a, b, c }; E ={apple, orange, pear}

n(D) = n(E) = 3; so set A is equivalent to set B, 
but the sets are NOT equal, since they do not 
contain the elements of each other.

2.6-13
13

Equivalent Sets



DEF:  Two sets A and B have are in one to one 
correspondence (bijection) if there’s a pairing 
(function) between the elements of one set to the 
other such that:

for each element of one set there is one and only one 
partner on the other set (function is one-to-one), and 
vice versa. There are no unpaired elements (function 
is onto).
{,}

{       ,            }              {61,  121}
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Cardinality and Finite Sets 

{1, 8, 12}



An infinite set is a set that can be placed in a one-
to-one correspondence with a proper subset of 
itself.

A proper subset does not contain all the elements 
of the set.

This a nonintuitive definition, that is more formal, 
and independent of the notion of cardinality. It 
takes us away from our “finite” experience.

2.6-15

Infinite Set

15



Show that N = {1, 2, 3, 4, 5, …, n,…} is an infinite 
set.

2.6-16

The Set of Natural Numbers

16



Solution
Remove the first element of set N, to get the 

proper subset P of the set of counting numbers
N = {1, 2, 3, 4, 5,…,   n,…}

P = {2, 3, 4, 5, 6,…, n + 1,…}
For any number n in N, its corresponding number 

in P is n + 1. 
An explicit one-to-one and onto function 

(bijection) f:N→P is given by f(n)=n+1
17

The Set of Natural Numbers



Solution
We have shown the desired one-to-one 

correspondence, therefore the set of counting 
numbers is infinite.

N = {1, 2, 3, 4, 5,…,   n,…}

P = {2, 3, 4, 5, 6,…, n + 1,…}

2.6-18

The Set of Natural Numbers
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Careful visualizing One-to-one correspondence 
between an infinite set and its proper subsets
Not including some of the elements of the original 
set does not disqualify having the same cardinality
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Understanding Proper subsets



A set is countable if it is finite or if it can be 
placed in a one-to-one correspondence with 
the set of counting numbers (countable 
infinite).

All infinite sets that can be placed in a one-to-
one correspondence with a set of counting 
numbers have cardinal number aleph-naught 
or aleph-zero, symbolized ℵ0. 

2.6-20
20

Countable Sets



Show the set of odd counting numbers has 
cardinality ℵ0.

2.6-21

The Cardinal Number of the Set of 
Odd Numbers

21



Solution
We need to show a one-to-one correspondence 
between the set of counting numbers and the set 
of odd counting numbers.

N = {1, 2, 3, 4, 5,…,   n,…}

O = {1, 3, 5, 7, 9,…, 2n–1,…}

An explicit one-to-one and onto function 
(bijection) f:N→O is given by f(n)=2n-1 22

The Cardinal Number of the Set of 
Odd Numbers



Solution
Since there is a one-to-one correspondence, the 
odd counting numbers have cardinality ℵ0; that is
n(O) = ℵ0.

N = {1, 2, 3, 4, 5,…,   n,…}

O = {1, 3, 5, 7, 9,…, 2n–1,…}

2.6-23

The Cardinal Number of the Set of 
Odd Numbers
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Infinite Countable Sets
By similar one to one correspondences, one 
can show that the following sets have 
cardinality ℵ0.

Even numbers
Perfect squares, cubes or perfect nth powers
Prime numbers
Fibonacci numbers
Any infinite subset of the counting numbers



That makes sense, ℵ0 is the smallest infinity.
Obviously we need bigger sets to possibly find 
bigger sizes of infinity
Integers = {…-3,-2,-1,0,1, 2,3,…}
Is the set of all integers countable infinite?
Can we find a pairing (1-to-1 correspondence) 
with the counting numbers?
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The Cardinal Number of the Integers



An explicit one-to-one and onto 
function (bijection) f:N→Z is given by

𝑓𝑓 𝑛𝑛 =

𝑛𝑛
2
𝑖𝑖𝑓𝑓 𝑛𝑛 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛

−
𝑛𝑛 − 1

2
𝑖𝑖𝑓𝑓 𝑛𝑛 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜

26

The Cardinal Number of the 
Integers

N = {1, 2, 3, 4, 5,  6, 7,…,

Z = {0,1, -1, 2, -2,3, -3…}

Since there is a one-to-one correspondence, the Integers have 
cardinality ℵ0

An explicit one-to-one and onto 
function (bijection) f:Z→N is given by

𝑓𝑓 𝑛𝑛 = �
2𝑛𝑛 𝑖𝑖𝑓𝑓 𝑛𝑛 𝑖𝑖𝑖𝑖 𝑝𝑝𝑜𝑜𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑒𝑒𝑒𝑒

2 𝑛𝑛 + 1 𝑖𝑖𝑓𝑓 𝑛𝑛 𝑖𝑖𝑖𝑖 𝑛𝑛𝑜𝑜𝑛𝑛𝑝𝑝𝑜𝑜𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑒𝑒𝑒𝑒
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The Cardinal Number of the 
Integers

N = {1, 2, 3, 4, 5,  6, 7,…,

Z = {0,1, -1, 2, -2,3, -3…}

Since there is a one-to-one correspondence, the Integers have 
cardinality ℵ0

“cut number line in half” and interleave the integers
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Hilbert’s Paradox of the Grand Hotel 
In the early 1900’s, the German mathematician David Hilbert 
proposed a  hypothetical scenario that keenly illustrates 
Cantor’s counter-intuitive results on infinite sets.

He called it the paradox of the Grand Hotel (or Hotel Infinity).

Consider a hotel with infinitely many rooms, all of which are 
occupied (filled at capacity). 

He showed that it was possible then to accommodate a 
countably infinite number of passengers arriving at the hotel in 
a countably infinite number of buses! 



Hilbert’s Grand Hotel

Lets start analysing finite 
new arrivals to the filled 
hotel.
One new arrival

29



One new arrival
Everybody moves up ONE 
room.
Since no LAST room! Everyone 
gets a room.
New arrival put in room 1
Done!
Correspondence n → n+1
1 + ℵ0 = ℵ0

30

Hilbert’s Grand Hotel
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• 259 new arrivals

Hilbert’s Grand Hotel
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• 259 new arrivals
• Everybody moves up 259 

rooms, so if they are in 
room n they move to room 
n + 259 

• New arrivals put in rooms 
1 to 259. Done!

• Works for any finite k 
number of new arrivals.

• Correspondence n → n+k
• k + ℵ0 = ℵ0

Hilbert’s Grand Hotel



Hilbert’s Grand Hotel
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Suppose now an infinite 
long buss arrives fully 
filled with an infinite 
number of new arrivals
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N: 1 2 3 4  5 … n …  
 
E:  2 4 6 8 10 … 2n … 

Everybody moves to the room 
with number twice that of their 
current room: n → 2n
All the odd numbered rooms are 
now free and he uses them to 
accommodate the infinite number 
of people on the bus

ℵ0 + ℵ0 = ℵ0

Hilbert’s Grand Hotel
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Countably infinite 
number of buses each 
with countably infinite 
passengers

Hilbert’s Grand Hotel
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Hilbert’s Grand Hotel
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Countably infinite number of buses each 
with countably infinite passengers
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Hilbert’s Grand Hotel



39

Hilbert’s Grand Hotel



40ℵ0 times ℵ0 = ℵ0

Hilbert’s Grand Hotel
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Hilbert’s Paradox of the Grand Hotel 
A more tangible algorithm for selection of room numbers
Empty the odd numbered rooms by sending the guest in room 
n to room 2n

Put the nth passenger of the first infinite bus load in rooms 3n

The nth passenger of the second infinite bus in rooms 5n

In general, the nth passenger in bus number k uses the rooms 
Pn where P is the kth odd prime number. 
This solution leaves certain rooms empty (which may or may 
not be useful to the hotel); specifically, all odd numbers that 
are not prime powers, such as 15 or 847, will no longer be 
occupied.
But what a wonderful discovery, an infinite amount busses 
filled with infinite passengers, fit into a single infinite hotel!!!
https://www.youtube.com/watch?v=Uj3_KqkI9Zo

https://www.youtube.com/watch?v=Uj3_KqkI9Zo


I see what might be going on – we can do this because these 
infinite sets are discrete, have gaps, and this is what allows 
the method to work because we can somehow interleave 
them and this is why we always end up with ℵ0.
Lets fill in the gaps. A rational number or fraction is any 
integer divided by any nonzero integer, for example, 5/4, 
87/32, -567/981.
The rationals don’t have gaps in the sense that between any 
two rationals there is another rational.
Even more the rational numbers are dense in the reals, 
meaning that for every real number there is always a rational 
number “arbitrarily close” to it.
Surely the rationals are not countable, right?? 42

Only one size of infinity?



Rationals=all fractions

𝑸𝑸 = 𝒑𝒑
𝒒𝒒
𝒑𝒑,𝒒𝒒 ∈ 𝒁𝒁,𝒒𝒒 ≠ 𝟎𝟎

Is the set of all rationals countable 
infinite?
If we can find a one-to-one 
correspondence with the positive 
rationals we play the same game as 
integers to get the negative ones.

43

Cardinality of the Rational numbers



44

Cardinality of the Rational numbers
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Cardinality of the Rational numbers

In particular, the one to one correspondence is given by
1↔0/1, 2↔1/1, 3 ↔2/1, 4↔1/2, 5 ↔1/3, 6 ↔1/4,…

So Cardinality of the Rational numbers is ℵ0
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Cardinality of the Rational numbers

The function f:Q→N, 𝑓𝑓 𝑝𝑝
𝑞𝑞

= 2𝑝𝑝3𝑞𝑞

Injects the rational into the counting numbers

Thm: The following are equivalent
a) Set A is countable infinite
b) There is an onto function f:N →A
c) There is an injection (one-to-one) function f:A →N

Need discrete math or beyond to go deeper into such 
proofs.



47Georg Cantor  1845 – 1918

Cantor’s infinities

Bronze monument  to Cantor 
in Halle-Neustadt



So Far all of the sets we have encountered are countable 
infinity. Is there only one “size” of infinity?

In order to prove that other sized of infinity exist we 
must show that there is a set of numbers that is not 
countable. That is bigger than “first size” of infinity.

Suppose that R were countable.   In particular, any 
subset of R, being smaller, would be countable also.  
So the interval (0,1) would be countable.

So if we can show that all the decimal numbers between 
0 and 1 are not countable we have discovered that 
they are of a different size of infinity.

48

Uncountability of the set of 
Real Numbers



Suppose that all real numbers between 0 and 1 are 
countable. So there exist a pairing with the 
countable numbers.

That means we can we have a list, were we can see the 
first number, second, etc.

r1 , r2 , r3 , r4 , r5 , r6 , r7, …
Suppose the above list contains EVERY real number 

between 0 and 1.
Cantor’s diabolical diagonalization argument will take 

this supposed list, and create a number between 0 
and 1 which is not on the list.  This will contradict 
the countability assumption hence proving that R is 
not countable.

49

Uncountability of R
Cantor’s Diabolical Diagonal



Cantor's Diagonalization 
Argument

r1 0.
r2 0.
r3 0.
r4 0.
r5 0.
r6 0.
r7 0.
:

revil 0. 50

 Decimal expansions of ri



Cantor's Diagonalization 
Argument

r1 0. 1 2 3 4 5 6 …
r2 0.
r3 0.
r4 0.
r5 0.
r6 0.
r7 0.
:

revil 0. 51

 Decimal expansions of ri



Cantor's Diagonalization 
Argument

r1 0. 1 2 3 4 5 6 …
r2 0. 1 1 1 1 1 1 …
r3 0.
r4 0.
r5 0.
r6 0.
r7 0.
:

revil 0. 52

 Decimal expansions of ri



Cantor's Diagonalization 
Argument

r1 0. 1 2 3 4 5 6 …
r2 0. 1 1 1 1 1 1 …
r3 0. 2 5 4 2 0 9 …
r4 0.
r5 0.
r6 0.
r7 0.
:

revil 0. 53

 Decimal expansions of ri



Cantor's Diagonalization 
Argument

r1 0. 1 2 3 4 5 6 …
r2 0. 1 1 1 1 1 1 …
r3 0. 2 5 4 2 0 9 …
r4 0. 7 8 9 0 6 2 …
r5 0.
r6 0.
r7 0.
:

revil 0. 54

 Decimal expansions of ri



Cantor's Diagonalization 
Argument

r1 0. 1 2 3 4 5 6 …
r2 0. 1 1 1 1 1 1 …
r3 0. 2 5 4 2 0 9 …
r4 0. 7 8 9 0 6 2 …
r5 0. 0 1 1 0 1 0 …
r6 0.
r7 0.
:

revil 0. 55

 Decimal expansions of ri



Cantor's Diagonalization 
Argument

r1 0. 1 2 3 4 5 6 …
r2 0. 1 1 1 1 1 1 …
r3 0. 2 5 4 2 0 9 …
r4 0. 7 8 9 0 6 2 …
r5 0. 0 1 1 0 1 0 …
r6 0. 5 5 5 5 5 5 …
r7 0.
:

revil 0. 56

 Decimal expansions of ri



Cantor's Diagonalization 
Argument

r1 0. 1 2 3 4 5 6 …
r2 0. 1 1 1 1 1 1 …
r3 0. 2 5 4 2 0 9 …
r4 0. 7 8 9 0 6 2 …
r5 0. 0 1 1 0 1 0 …
r6 0. 5 5 5 5 5 5 …
r7 0. 7 6 7 9 5 4 …
:

revil 0. 57

 Decimal expansions of ri



Cantor's Diagonalization 
Argument

r1 0. 1 2 3 4 5 6 …
r2 0. 1 1 1 1 1 1 …
r3 0. 2 5 4 2 0 9 …
r4 0. 7 8 9 0 6 2 …
r5 0. 0 1 1 0 1 0 …
r6 0. 5 5 5 5 5 5 …
r7 0. 7 6 7 9 5 4 …
:

revil 0. 2 9 7 5 0 4 … 58

 Decimal expansions of ri



Is New decimal number in our 
original list?

59

revil 0. 2 9 7 5 0 4 …

revil Is constructed by changing the digits of 
the main diagonal number.



Is this the same as the first number in our list?
NO, we changed the first digit.
It cannot be the second number since we changed the second digit.
It cannot be the nth number in the list since we changed the nth digit.

Conclusion: This new decimal number is not in our list. But it is still a 
decimal  number between 0 and 1.

So all the real numbers between 0 and 1 are UNCOUNTABLE

Eureka!, you have found a new “size” of infinity.

Is New decimal number in our 
original list?

60

revil 0. 2 9 7 5 0 4 …



If the cardinality of all real numbers between (0,1) is 
uncountable, what about all real numbers?
Let the decimals in the interval (0,1) be represented 
as a line segment and bend into a semicircle, position 
it above the real line:

61

Cardinality of the real line



Rays emanating from point P will establish a 
geometric pairing for the points on the 
semicircle with the points on the line.
So the cardinality of the real number line is 
same as (0,1), namely uncountable infinite

62

Cardinality of the real line

2 𝜋𝜋

−10100
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The cardinality of the reals is the same as that of 
the interval of the reals between 0 and 1

𝑓𝑓(𝑥𝑥) =
2𝑥𝑥 − 1
𝑥𝑥 − 𝑥𝑥2

The cardinality of the reals is 
often denoted by c
for the continuum of real 
numbers. 

Consider the one-to-one 
correspondence: f:(0,1)→ ℝ



Given a set A, the power set of A, denoted by P(A), is the 
set of all subsets of A.

For example, for set A = {a, b, c}, has cardinality n(A)=3, 
and has 23 =8 subsets, namely:

P(A) = { { }, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c} }

{ } is the empty set and if a set has n elements it has 2n

subsets. So the cardinality of the power set is: n(P(A))= 2n(A)

The power set is itself a set
64

Power set of a set



Indeed we can show that the reals (the 
continuum) have the cardinality of the power 
set of the natural numbers which is often 
written as above.

65

𝒄𝒄 = 𝟐𝟐ℵ𝟎𝟎



Set Description Cardinality
Natural numbers 1, 2, 3, 4, 5, … ℵ0

Integers …, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, … ℵ0

Rational numbers or 
fractions

All the decimals which terminate or 
repeat

ℵ0

Irrational numbers All the decimals which do not 
terminate or repeat

C

Real numbers All decimals C

66

Cardinality of some sets



Set Description Cardinality
Real numbers All decimals c

Algebraic numbers All solutions of polynomial 
equations with integer coefficients. 
All rationals are algebraic as well as 
many irrationals e. g.√2.

ℵ0

Transcendental numbers All reals which are not algebraic 
numbers e.g. π, e, 2√2

c

67

Cardinality of some sets



“I see it, but I don’t believe it”. Cantor
If we can show a one-to-one correspondence 
between 0,1 × (0,1) × ⋯ (0,1) ↔ (0,1), we 
can extend this result for ℝ𝒏𝒏 ↔ ℝ, proving 
that 𝒏𝒏 ℝ𝒏𝒏 =c=𝒏𝒏(ℝ)
Let 𝑥𝑥 ∈ (0,1)𝒏𝒏 decimal expansion be given by: 
(0.𝑎𝑎1𝑎𝑎2𝑎𝑎3 … , 0. 𝑏𝑏1𝑏𝑏2𝑏𝑏3 … ,⋯ , 0. 𝑧𝑧1𝑧𝑧2𝑧𝑧3 … ), 
then we can match it to y ∈ (0,1) by 
interleaving digits (“chunks”) as 
(0.𝑎𝑎1𝑏𝑏1𝑐𝑐1 … 𝑧𝑧1𝑎𝑎2𝑏𝑏2𝑐𝑐2 … 𝑧𝑧2𝑎𝑎3𝑏𝑏3𝑐𝑐3 … 𝑧𝑧3 … )

68

𝒏𝒏 ℝ𝒏𝒏 = 𝒏𝒏(ℝ)



Cantor originally tried interleaving the digits himself, but 
Dedekind pointed out the problem of nonunique decimal 
representations, namely how ½=0.5=0.4999…., or 0.999….=1
In order to resolve the interleaving digits not being reversible 
in those cases, we need to use “chunking” by always choosing 
the non terminating zero representation of the decimal, 
meaning 0.199… instead of its equal representation 0.200…, 
and going to the next nonzero digit, inclusive. 
For example For example, 1/200=0.00499… is broken up as 
004 9 9 9…, and 0.01003430901111… is broken up as 

01 003 4 3 09 01 1 1…
Now instead of interleaving digits, we interleave chunks. To 
interleave 0.004999… and 0.01003430901111…, we get

0.004 01 9 003 9 4 9…. 69

𝒏𝒏 ℝ𝒏𝒏 = 𝒏𝒏(ℝ)



Lets visualize this extraordinary result
The result was proved by Cantor in 1878, but 
only became intuitively apparent in 1890, 
when Giuseppe Peano introduced the space-
filling curves.
Curved lines that twist and turn enough to 
fill the whole of any square, or cube, or 
hypercube, or finite-dimensional space. 
Pictured on the right are the first three steps 
of a fractal construction whose limit is a 
space-filling curve, showing that there are as 
many points in a one-dimensional line as in a 
two-dimensional square.

70

𝒏𝒏 ℝ𝒏𝒏 = 𝒏𝒏(ℝ)
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Cantor’s Theorem

For any set A, the power set of A, P(A) has a strictly 
greater cardinality than A itself.

Clearly we can inject A→P(A), by taking each element 
x →{x} to the singleton set containing it.

So n(A)≤n(P(A)), but now we need to show equality 
cannot happen and thus strict inequality exist.

So in order to show no one-to-one correspondence 
exist, it suffices to show no onto function exist.
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Cantor’s Theorem

Complete proof of Cantor’s power set theorem

𝐶𝐶𝑜𝑜𝑛𝑛𝑖𝑖𝑖𝑖𝑜𝑜𝑒𝑒𝐶𝐶 𝑓𝑓:𝐴𝐴 → 𝑃𝑃 𝐴𝐴 .𝑇𝑇𝑇𝑒𝑒𝑛𝑛 𝑥𝑥 ∈ 𝐴𝐴|𝑥𝑥 ∉ 𝑓𝑓(𝑥𝑥) ∉ 𝑓𝑓 𝐴𝐴 .𝑄𝑄.𝐸𝐸.𝐷𝐷.

Feel free to use it to impress family and friends.
Not clear?
Ok, lets break this proof down for us mere mortals.



Elements of A      Elements of P[A] 

        (i.e. subsets of A) 

 a        {c, d} 

 b        {e} 

 c        {b, c, d, e} 

 d        { } 

 e        A 

 f        {a, c, e, g, …} 

 g        {b, k, m, …} 

 .         . 
 .         . 
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No set can be placed in one-to-one 
correspondence with its power set
Proof by contradiction. Suppose there is such onto 
function from A→P(A), and correspondence given by:



Elements of A      Elements of P[A] 

        (i.e. subsets of A) 

 a        {c, d} 

 b        {e} 

 c        {b, c, d, e} 

 d        { } 

 e        A 

 f        {a, c, e, g, …} 

 g        {b, k, m, …} 

 .         . 
 .         . 
 .         . 
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No set can be placed in one-to-one 
correspondence with its power set

Let B be the set of each and every element of the original set A that is 
not a member of the subset with which it is matched.
For the matching above, B = {a, b, d, f, g, …}



 .         . 
 .         . 
 .         . 
 z         B 

.         . 
 .         . 
 .         . 
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Now B is just a subset of A so must appear 
somewhere in the right-hand column and so is 
matched with some element of A say z



 .         . 
 .         . 
 .         . 
 z         B 

.         . 
 .         . 
 .         . 
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Now B is just a subset of A so must appear 
somewhere in the right-hand column and so is 
matched with some element of A say z

Now for the fatal question! Is z an element of B?
Since z is an element of A, it must be in B or not be in B
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Case 1: Suppose z is an element of B
Then by definition of set B, which consists of 
elements which do not belong to their matching 
subset, z must not belong to B! Contradiction

 .         . 
 .         . 
 .         . 
 z         B 

.         . 
 .         . 
 .         . 



 .         . 
 .         . 
 .         . 
 z         B 

.         . 
 .         . 
 .         . 
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Case 2: Suppose z is not an element of B
Then z satisfies the defining property of B which 
is that it consists of elements which do not 
belong to their matching subset, so z does 
belong to B! Contradiction!

Thus proving, that for any set A, the power set of A, 
P(A) has a strictly greater cardinality than A itself.



Reals have smaller cardinality than the power set 
of the reals.
Which is smaller than the power set of the power 
set of the reals
Which is smaller than the power set of the power 
set of the power set of the reals
Which is smaller than the power set of the power 
set of the power set of the reals, etc!
𝑛𝑛 ℝ < 𝑛𝑛 𝑃𝑃 ℝ < 𝑛𝑛 𝑃𝑃 𝑃𝑃 ℝ < 𝑛𝑛 𝑃𝑃 𝑃𝑃 𝑃𝑃 ℝ < ⋯
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Infinity of infinities
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“Infinitely 
many more 
cardinals”



So far, 𝑛𝑛 ℕ = ℵ0 and 𝑛𝑛 ℝ = 𝑐𝑐, called the 
continuum. 
The proposal originally made by Georg Cantor 
that there is no infinite set with a cardinal 
number between that of the "small" infinite 
set of integers ℵ0 and the "large" infinite set 
of real numbers 𝑐𝑐 (the "continuum"). 
Symbolically, the continuum hypothesis is that 
ℵ1 = 𝑐𝑐
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The continuum Hypothesis



The Continuum hypothesis states:
there is no transfinite cardinal falling strictly
between ℵ0 and c

Work of Gödel (1940) and of Cohen (1963) 
together implied that the continuum hypothesis 
was independent of the other axioms of set 
theory
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Continuum hypothesis



My theory stands as firm as a rock; 
every arrow directed against it will 
return quickly to its archer. How do 
I know this? Because I have 
studied it from all sides for many 
years; because I have examined all 
objections which have ever been 
made against the infinite numbers; 
and above all because I have 
followed its roots, so to speak, to 
the first infallible cause of all 
created things. 83

Cantor’s assessment of his theory 
of the infinite

Cantor circa 1870
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Transfinite Arithmetic
When Cantor proposed his cardinal numbers (informally, the 
sizes of all finite or infinite sets), he also devised a new type of 
arithmetic for these  generalized numbers.

If the cardinal numbers are finite, then the operations are 
those of ordinary arithmetic. 

If the cardinal numbers are transfinite, then we have the 
following identities:

(Cantor’s Power Set Theorem)

Hence we have, for example 



5th Century B.C.     The Greek philosopher Zeno of Elea proposes his 
paradoxes of motion, all rooted in some misconceptions of the infinite 
(but also in deeper questions relating to the nature of time and space...) 

4th Century B.C. Aristotle’s work in metaphysics makes a distinction 
between the “potential” infinite and the “actual” infinite.

Early 17 th Century     Galileo shows the equinumerosity of the natural 
numbers with the perfect squares, leading to his celebrated paradox.  
His attempt to resolve this problem launches the first modern line of 
inquiry towards the infinite. 

Late 17th Century     Isaac Newton and Gottfried Leibniz independently 
develop the infinitesimal calculus, effectively paving the way for abstract 
analysis – a pillar of modern mathematics. 85

Historical Background (Pre-Cantor)



1870’s    The Russian mathematician Georg Cantor proposes his ground-
breaking theory of sets and an arithmetic for “transfinite” cardinal 
numbers.  His work grounds the concept of infinity on a rigorous 
mathematical basis and equips mathematics with a firm logical foundation.

1900’s The British logician Bertrand Russell points to the simplest and 
most damaging paradox that emerges from Cantorian set theory.    

1920’s     The German mathematicians Ernst Zermelo and Abraham 
Fraenkel formulate an axiomatic theory of sets (known as ZFC when 
including the axiom of choice) and resolve all standing paradoxes.

1960’s - The American mathematician Paul Cohen builds on previous work 
by the Austrian logician Kurt Gödel to show that the continuum hypothesis 
is independent from ZFC. 86

Historical Background (Post-Cantor)



“No one shall 
expel us from 
the Paradise 
that Cantor 
has created.” 
David Hilbert 
1926
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Devil's staircase

Cantor Set



https://www.youtube.com/watch?time_continue=65
2&v=23I5GS4JiDg

https://www.youtube.com/watch?v=i7c2qz7sO0I

https://www.youtube.com/watch?v=KDCJZ81PwVM

https://www.youtube.com/watch?v=SrU9YDoXE88
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Expand your knowledge with

https://www.youtube.com/watch?time_continue=652&v=23I5GS4JiDg
https://www.youtube.com/watch?v=i7c2qz7sO0I
https://www.youtube.com/watch?v=KDCJZ81PwVM
https://www.youtube.com/watch?v=SrU9YDoXE88
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