PALOMAR COLLEGE - WELDING YARD IMPROVEMENTS

5015037

Palomar Community College District

1140 W. Mission Rd., San Marcos, CA 92069

June 24, 2021

HMC Architects

PALOMAR COLLEGE - WELDING YARD IMPROVEMENTS PALOMAR COMMUNITY COLLEGE DISTRICT SAN MARCOS, CA

Electrical Engineer

TABLE OF CONTENTS

DIVISION 00 - PROCUREMENT AND CONTRACTING REQUIREMENTS

TO BE PROVIDED BY OWNER UNDER SEPARATE COVER

DIVISION 01 - GENERAL REQUIREMENTS

TO BE PROVIDED BY OWNER UNDER SEPARATE COVER

DIVISION 02 - EXISTING CONDITIONS

SECTION 02 41 19 - SELECTIVE DEMOLITION

DIVISION 03 - CONCRETE

SECTION 03 30 00 - CAST-IN-PLACE CONCRETE

DIVISION 05 - METALS

SECTION 05 12 00 - STRUCTURAL STEEL FRAMING

DIVISION 07 - THERMAL AND MOISTURE PROTECTION

SECTION 07 44 16 - PORCELAIN ENAMELED FACED PANELS SECTION 07 92 00 - JOINT SEALANTS

DIVISION 22 - PLUMBING

SECTION 22 00 00 - GENERAL PLUMBING REQUIREMENTS SECTION 22 05 23 - GENERAL DUTY VALVES FOR PLUMBING PIPING SECTION 22 05 29 - HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT SECTION 22 05 53 - IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT SECTION 22 11 16 - DOMESTIC WATER PIPING AND FITTINGS SECTION 22 11 19 - DOMESTIC WATER PIPING SPECIALTIES

DIVISION 23 - HEATING, VENTILATING, AND AIR CONDITIONING (HVAC)

SECTION 23 00 00 - GENERAL MECHANICAL REQUIREMENTS SECTION 23 05 93 - TESTING, ADJUSTING, AND BALANCING FOR HVAC SECTION 23 31 13 - METAL DUCTS SECTION 23 33 00 - AIR DUCT ACCESSORIES

DIVISION 26 - ELECTRICAL

SECTION 26 01 00 - ELECTRICAL GENERAL PROVISIONS SECTION 26 05 19 - POWER CONDUCTORS SECTION 26 05 26 - GROUNDING

SECTION 26 05 33 - CONDUIT AND FITTINGS SECTION 26 05 34 - OUTLET AND JUNCTION BOXES SECTION 26 28 16 - DISCONNECTS SECTION 26 90 90 - ELECTRICAL CLOSEOUT

DIVISION 32 - EXTERIOR IMPROVEMENTS

SECTION 32 13 13 - SITEWORK CONCRETE

END OF TABLE OF CONTENTS

SECTION 02 41 19

SELECTIVE DEMOLITION

PART 1 - GENERAL

1.01 SECTION INCLUDES

- A. Remove designated building equipment, fixtures, components and utilities to permit installation of new construction.
- B. Include Work required to demolish and remove elements of existing construction including concrete, paving and sub base, and similar elements of existing building construction, all as noted on Drawings or as required to permit installation of new construction.
- C. Comply with Title 24, Part 9, California Fire Code, Chapter 33 Fire Safety During Construction and Demolition, during all Phases of project.
- D. Hazardous Materials: It is not expected that hazardous materials will be encountered in the Work.
 - 1. Hazardous materials have been or will be removed by Owner before start of the Work.
 - 2. If materials suspected of containing hazardous materials are encountered, do not disturb; immediately notify Architect and Owner per the General Conditions. Owner will remove hazardous materials under a separate contract.
 - a. In the case of asbestos, stop work in the area of potential hazard, shut off fans and other air handlers ventilating the area, and rope off area until the questionable material is identified. Re-assign workers to continue work in unaffected areas. Resume work in the area of concern after safe working conditions are verified.

1.02 REFERENCE STANDARDS

- A. Conform to current adopted reference standards by date of issue of the current code cycle and the date of the Contract Documents.
- B. CBC 2019 California Building Code
 - 1. CBC-19A CBC Chapter 19A, Concrete.
 - 2. CBC-33 CBC Chapter 33, Safeguards During Construction
- C. CCR California Code of Regulations
 - 1. CCR-8.4 Title 8, Subchapter 4, Construction Safety Orders
- D. CFC 2019 California Fire Code
 - 1. CFC-5 CFC Chapter 5, Fire Service Features
 - 2. CFC-7, CFC Chapter 7, Fire-Resistance-Rated Construction
 - 3. CFC-9 CFC Chapter 9, Fire Protection Systems
 - 4. CFC-33 CFC Chapter 33, Fire Safety During Construction and Demolition

- E. ICRI International Concrete Repair Institute.
- F. NFPA National Fire Protection Association
 1. NFPA 241- Safeguarding Construction, Alteration and Demolition Operations
- G. SCAQMD South Coast Air Quality Management District
 - 1. SCAQMD-1403 Rule 1403, Asbestos Emissions from Demolition/Renovation Activities
- 1.03 ADMINISTRATIVE REQUIREMENTS
 - A. Pre-Demolition Conference: Conduct conference at Project site to comply with below.
 - B. Contractor shall schedule meeting after Notice of Award to review demolition operations.
 - C. Attendance Required: Owner, Architect, Contractor, Demolition Subcontractors, Project Inspector.
 - D. Construction Process:
 - 1. Contractor shall discuss overview of demolition procedures.
 - 2. Contractor shall identify items to be selected by Owner for salvage.
 - 3. Contractor shall review special requirements for equipment, safety, and noise.
 - E. Architect will record minutes and distribute copies within seven days after meeting to participants and those affected by decisions made.
 - F. Regulatory Requirements: Secure demolition permit from the Local Air Quality Management District for renovations involving the removal of 100 square feet/linear feet or greater of demolition, per District Regulations. Notify the AQMD at least 10 working days prior to commencement of demolition/renovation.
- 1.04 SUBMITTALS
 - A. Project Record Documents accurately record actual locations of capped utilities.
 - B. Pre-demolition Photographs or Video: Show existing conditions of adjoining construction, including finish surfaces, that might be misconstrued as damage caused by demolition operations. Comply with Division 01. Submit before Work begins.

1.05 EXISTING CONDITIONS

- A. Before beginning Work, investigate and verify existence and location of mechanical, drainage, and electrical systems and other construction affecting Work, including underground utilities.
 - 1. Before construction, survey and record points of connection of utility services.
 - 2. Locate invert elevation at points of connection to existing sanitary and storm drain, water-service piping, and underground electrical services.
 - 3. Employ a utility service locator company to locate underground utilities.
 - 4. Verify Owner's Record Drawings.
 - 5. Furnish survey of existing utilities.

PART 2 - PRODUCTS

2.01 NOT USED.

PART 3 - EXECUTION

3.01 PREPARATION

- A. Disconnect, remove and cap designated utility services within demolition areas. Notify Owner 48 hours in advance of any utility shut-down.
- B. Prior to commencement of demolition operations, notify Underground Service Alert of Southern California (800) 422-4133, Monday through Friday, 7:00 A.M. to 5:00 P.M.

C. Protection:

- 1. Protect existing items that are not indicated to be altered.
- 2. Adequately protect staff and public from harm and accident during demolition operations by the erection of proper barricades, signs, lighting, guard rails or other safety precautions. Conform to Title 8, Subchapter 4, CCR and NFPA 241.
- 3. Protective Devices: Install substantial enclosures, weatherproof and dust-proof shields, protective covers, screens and similar devices. Erect and move when necessary to permit use of existing rooms, areas or facilities. Remove entirely when their use is no longer essential. Patch or repair all areas where devices have been removed.

3.02 TEMPORARY MEASURES - LIFE SAFETY

- A. Maintain fully charged certified compliant fire extinguishers and water hoses readily available during demolition operations, per Section 906 CBC. Test electrical conductors for disconnection prior to removing.
- B. Maintain free and unobstructed access to emergency services per Title 19, CFC 503.1; 503.1.1, 503.4; and Appendix D, CFC Chapter 33 Sections 3310.1; 3312.1 and when required by Owner.
- C. Post NO SMOKING signs in English and Spanish, in number and location as approved by Architect.
- D. Reduce flammable and combustible fire load to minimum by daily removal of debris.
- E. Instruct construction personnel in fire safety and fire drill policies appropriate for areas where demolition operations occur.
- F. Deployment, disposition, administration and implementation of any and all safety measures shall be sole responsibility of Contractor.

3.03 EXECUTION

- A. Demolish in orderly and careful manner. Maintain protected egress and access at all times.
- B. Except where noted otherwise, immediately remove demolished materials from site and dispose legally. Do not utilize Owner's disposal system.
- C. Remove materials to be re-installed or retained in manner to prevent damage. Store and protect until re-installation.
- D. Do not burn or bury materials on site.
- E. Upon completion of Work, leave areas of Work in clean condition.
- 3.04 SELECTIVE DEMOLITION, REPAIR AND ALTERATIONS WORK
 - A. New and existing Work that is cut into, altered, damaged, relocated or reinstalled shall be restored to original conditions. Workmanship and materials to conform to applicable provisions of other applicable Sections of Specifications.
 - B. Asphalt Paving: remove AC paving including sub-base where indicated in drawings and disposed in legal dumpsites, crushing operations on site and re-use of pulverized AC not permitted.
 - C. Removal of concrete flatwork: remove concrete paving (panel) to the nearest expansion joint or contraction joint and provide matching concrete surface to abut to new work at same finish levels unless noted otherwise.
 - D. Work shall be fully coordinated to ensure proper sequence, limits, methods and time of performance. Arrange Work so as to impose a minimum of hardship on present operation of facilities.
 - E. Miscellaneous Removal Items: Items not specifically mentioned shall be removed as indicated on drawings.
 - F. Miscellaneous Work: Items not specifically mentioned shall be repaired, patched or finished like new Work or to match existing adjoining surfaces as approved. Surfaces damaged shall be restored to original condition.

3.05 SALVAGE AND DISPOSAL

A. Disposal: Removed material, other than items directed to be salvaged or indicated to be reused, become Contractor's property upon removal, and shall be removed from site. Debris shall be picked up and disposed of, off site, by Contractor promptly and continuously as Work progresses, and not allowed to accumulate. Sprinkle the debris to prevent dust nuisance. Secure and pay for required hauling permits and pay dumping fees and charges. Contractor shall make every reasonable effort to divert debris to recycling or reuse facilities.

END OF SECTION

SECTION 03 30 00

CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Latest edition of American Concrete Institute, ACI 318-14 and Manual of Concrete Practice (inclusive of all Parts).
- C. If conflict occurs between the Contract Drawings, the Project Manual, ACI 318-14, and the Manual of Concrete Practice, the most stringent takes precedence.
- 1.02 SUMMARY
 - A. Section includes cast-in-place concrete, including formwork, reinforcement, concrete materials, mixture design, placement procedures, and finishes.
- 1.03 DEFINITIONS
 - A. Cementitious Materials: Portland cement alone or in combination with one or more of the following: blended hydraulic cement, fly ash and other pozzolans, ground granulated blast-furnace slag, and silica fume; subject to compliance with requirements.
 - B. Shore: Vertical or inclined support members designed to carry the weight of formwork, concrete, and construction loads above.
 - C. Strength Test: The average of the strengths of at least two 6 by 12 inch cylinders or at least three 4 by 8 inch cylinders made from the same sample of concrete and tested at 28 days or at test age designated for determination of specified compressive strength of concrete.
- 1.04 ACTION SUBMITTALS
 - A. Product Data: For each type of product indicated.
 - B. Design Mixtures: For each concrete mixture. Submit alternate design mixtures when characteristics of materials, Project conditions, weather, test results, or other circumstances warrant adjustments.
 - 1. Indicate amounts of mixing water to be withheld for later addition at Project site.

- 2. Include qualified strength test records if design mixture is based on field experience.
- 3. Include results of trial mixtures if design mixture is based on trial mixtures.
- 4. Include results of modulus of elasticity tests on trial mixtures.
- 5. Design mixture to be signed and sealed by a professional Civil or Structural Engineer licensed in the State in which the Project is constructed.
- C. Steel Reinforcement Shop Drawings: Placing drawings that detail fabrication, bending, and placement. Include bar sizes, lengths, material, grade, bar schedules, stirrup spacing, bent bar diagrams, bar arrangement, splices and laps, mechanical connections, tie spacing, hoop spacing, and supports for concrete reinforcement.
- 1.05 INFORMATIONAL SUBMITTALS
 - A. Qualification Data: For Installers.
 - B. Welding certificates.
 - C. Material Certificates: For each of the following, signed by manufacturers:
 - 1. Cementitious materials.
 - 2. Admixtures.
 - 3. Form materials and form-release agents.
 - 4. Steel reinforcement and accessories.
 - 5. Curing compounds.
 - 6. Floor and slab treatments.
 - 7. Bonding agents.
 - 8. Vapor retarders, including subbase materials.
 - 9. Semirigid joint filler.
 - 10. Joint-filler strips.
 - 11. Repair materials.
 - D. Material Test Reports: For the following, from a qualified Testing Agency, indicating compliance with requirements:
 - 1. Aggregates.
 - E. ICC ES Evaluation Reports: For evidence of Building Code compliance:
 - 1. Mechanical splices and connectors for reinforcing steel.
 - F. Shoring and Reshoring: Indicate proposed schedule and sequence of stripping formwork, shoring removal, and reshoring installation and removal.
 - G. Construction Joint Layout: Indicate proposed construction joints required to construct the structure.
 - 1. Location of construction joints is subject to approval of the Architect

H. Minutes of preinstallation conference.

1.06 QUALITY ASSURANCE

- A. Installer Qualifications: A qualified installer who employs on Project personnel qualified as ACI-certified Flatwork Technician and Finisher and a supervisor who is an ACI-certified Concrete Flatwork Technician.
- B. Manufacturer Qualifications: A firm experienced in manufacturing ready-mixed concrete products and that complies with ASTM C94/C94M requirements for production facilities and equipment.
 - 1. Manufacturer certified according to NRMCA's "Certification of Ready Mixed Concrete Production Facilities."
- C. Source Limitations: Obtain each type or class of cementitious material of the same brand from the same manufacturer's plant, obtain aggregate from single source, and obtain admixtures from single source from single manufacturer.
- D. Welding Qualifications: Qualify procedures and personnel according to AWS D1.4/D1.4M, "Structural Welding Code Reinforcing Steel."
- E. ACI Publications: Comply with the following unless modified by requirements in the Contract Documents:
 - 1. ACI 301, "Specifications for Structural Concrete," Sections 1 through 5.
 - 2. ACI 117, "Specifications for Tolerances for Concrete Construction and Materials."
- F. Concrete Testing Service: Engage a qualified independent Testing Agency to perform material evaluation tests and to design concrete mixtures.
- G. Preinstallation Conference: Conduct conference at Project site.
 - 1. Review special inspection and Testing Agency procedures for field quality control, concrete finishes and finishing, cold- and hot-weather concreting procedures, curing procedures, construction contraction and isolation joints, and joint-filler strips, semirigid joint fillers, forms and form removal limitations, shoring and reshoring procedures, vapor-retarder installation, anchor rod and anchorage device installation tolerances, steel reinforcement installation, floor and slab flatness and levelness measurement, concrete repair procedures, and concrete protection.

1.07 DELIVERY, STORAGE, AND HANDLING

A. Steel Reinforcement: Deliver, store, and handle steel reinforcement to prevent bending and damage.

PART 2 - PRODUCTS

2.01 FORM-FACING MATERIALS

- A. Smooth-Formed Finished Concrete: Form-facing panels that will provide continuous, true, and smooth concrete surfaces. Furnish in largest practicable sizes to minimize number of joints.
 - 1. Plywood, metal, or other approved panel materials.
- B. Rough-Formed Finished Concrete: Plywood, lumber, metal, or another approved material. Provide lumber dressed on at least two edges and one side for tight fit.
- C. Forms for Cylindrical Columns, Pedestals, and Supports: Metal, glass-fiberreinforced plastic, paper, or fiber tubes that will produce surfaces with gradual or abrupt irregularities not exceeding specified formwork surface class. Provide units with sufficient wall thickness to resist plastic concrete loads without detrimental deformation.
- D. Pan-Type Forms: Glass-fiber-reinforced plastic or formed steel, stiffened to resist plastic concrete loads without detrimental deformation.
- E. Void Forms: Structurally sufficient to support weight of plastic concrete and other superimposed loads.
 - 1. Expanded polystyrene (EPS); ASTM C578, Type XI.
- F. Chamfer Strips: Wood, metal, PVC, or rubber strips (19 by 19 mm).
- G. Rustication Strips: Wood, metal, PVC, or rubber strips, kerfed for ease of form removal.
- H. Form-Release Agent: Commercially formulated form-release agent that will not bond with, stain, or adversely affect concrete surfaces and will not impair subsequent treatments of concrete surfaces.
- I. Form Ties: Factory-fabricated, removable or snap-off metal or glass-fiberreinforced plastic form ties designed to resist lateral pressure of fresh concrete on forms and to prevent spalling of concrete on removal.
 - 1. Furnish units that will leave no corrodible metal closer than 1 inch to the plane of exposed concrete surface.

2.02 STEEL REINFORCEMENT

- A. Recycled Content of Steel Products: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 60 percent.
- B. Reinforcing Bars: ASTM A615/A615M, Grade 60, deformed.
- C. Low-Alloy-Steel Reinforcing Bars: ASTM A706/A706M, Grade 60, deformed.
- D. Plain-Steel Welded Wire Reinforcement: ASTM A1064/A1064M, plain, fabricated from as-drawn steel wire into flat sheets.

2.03 REINFORCEMENT ACCESSORIES

- A. Joint Dowel Bars: ASTM A615/A615M, Grade 60, plain-steel bars, cut true to length with ends square and free of burrs.
- B. Dowel Bar Sleeves: Circular PVC sleeve, sealed one end, dowel bar embedment plus 1 inch in length, and 1/16 inch annular space inside diameter.
- C. Deformed Bar Anchors: ASTM A1064/A1064M, deformed steel wire; AWS D1.1/D1.1M, Type C.
- D. Bar Supports: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars and welded wire reinforcement in place. Manufacture bar supports from steel wire, plastic, or precast concrete according to CRSI's "Manual of Standard Practice," of greater compressive strength than concrete and as follows:
 - 1. For concrete surfaces exposed to view where legs of wire bar supports contact forms, use CRSI Class 1 plastic-protected steel wire or CRSI Class 2 stainless-steel bar supports.
- E. Mechanical Splices and Connectors: Comply with ACI 318 and ACI 439.3R, Type I and Type II.
 - 1. Furnish splicing and connector system with current ICC ES Evaluation Report.
- F. Punching Shear Reinforcing for Slabs: Comply with ACI 318 and ACI 421.1R.
 - 1. Furnish shear reinforcing system with current ICC ES Evaluation Report

2.04 CONCRETE MATERIALS

- A. Regional Materials: Provide concrete that has been manufactured within 500 miles of Project site from aggregates and/or cement that have been extracted, harvested, or recovered, as well as manufactured, within 500 miles of Project site.
- B. Cementitious Material: Use the following cementitious materials, of the same type, brand, and source, throughout Project:
 - 1. Portland Cement: ASTM C150/C150M, Type I or Type II. Supplement with the following:
 - a. Fly Ash: ASTM C618, Class F.
- C. Normal-Weight Aggregates: ASTM C33/33M, Class 1N coarse aggregate, wellgraded. Provide aggregates from a single source.
 - 1. Maximum Coarse Aggregate Size: 1-1/2 inches nominal.
 - 2. Fine Aggregate: Free of materials with deleterious reactivity to alkali in cement.
- D. Water: ASTM C 94/C94M.

2.05 ADMIXTURES

- A. Air-Entraining Admixture: ASTM C260/C260M.
- B. Chemical Admixtures: Provide admixtures certified by manufacturer to be compatible with other admixtures and that will not contribute water-soluble chloride ions exceeding those permitted in hardened concrete. Do not use calcium chloride or admixtures containing calcium chloride.
 - 1. Water-Reducing Admixture: ASTM C494/C494M, Type A.
 - 2. Retarding Admixture: ASTM C494/C494M, Type B.
 - 3. Water-Reducing and Retarding Admixture: ASTM C494/C494M, Type D.
 - 4. High-Range, Water-Reducing Admixture: ASTM C494/C494M, Type F.
 - 5. High-Range, Water-Reducing and Retarding Admixture: ASTM C494/C494M, Type G.

2.06 VAPOR RETARDERS

- A. Sheet Vapor Retarder: ASTM E1745, Class A, 15 mil. Include manufacturer's recommended adhesive or pressure-sensitive tape.
- B. Granular Fill: Clean mixture of crushed stone or crushed or uncrushed gravel; ASTM D448, Size 57, with 100 percent passing a 1-1/2-inch sieve and 0 to 5 percent passing a No. 8 sieve.
- C. Fine-Graded Granular Material: Clean mixture of crushed stone, crushed gravel, and manufactured or natural sand; ASTM D448, Size 10, with 100 percent passing a 3/8-inch sieve, 10 to 30 percent passing a No. 100 sieve, and at least 5 percent passing No. 200 sieve; complying with deleterious substance limits of ASTM C33/C33M for fine aggregates.

2.07 FLOOR AND SLAB TREATMENTS

- A. Slip-Resistive Aluminum Granule Finish: Factory-graded, packaged, rustproof, nonglazing, abrasive aggregate of not less than 95 percent fused aluminum-oxide granules.
- B. Unpigmented Mineral Dry-Shake Floor Hardener: Factory-packaged dry combination of portland cement, graded quartz aggregate, and plasticizing admixture.

2.08 LIQUID FLOOR TREATMENTS

- A. VOC Content: Liquid floor treatments shall have a VOC content of 200 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Penetrating Liquid Floor Treatment: Clear, chemically reactive, waterborne solution of inorganic silicate or siliconate materials and proprietary components; odorless; that penetrates, hardens, and densifies concrete surfaces.

2.09 CURING MATERIALS

- A. Evaporation Retarder: Waterborne, monomolecular film forming, manufactured for application to fresh concrete.
- B. Absorptive Cover: AASHTO M 182, Class 2, burlap cloth made from jute or kenaf, weighing approximately 9 oz./sq. yd. when dry.
- C. Moisture-Retaining Cover: ASTM C171, polyethylene film or white burlappolyethylene sheet.
- D. Water: Potable.
- E. Clear, Waterborne, Membrane-Forming Curing Compound: ASTM C309, Type 1, Class B, dissipating.

2.10 RELATED MATERIALS

- A. Expansion- and Isolation-Joint-Filler Strips: ASTM D1751, asphalt-saturated cellulosic fiber.
- B. Semirigid Joint Filler: Two-component, semirigid, 100 percent solids, epoxy resin with a Type A shore durometer hardness of 80 per ASTM D2240.
- C. Reglets: Fabricate reglets in concrete to receive flashing from other trades of not less than 0.022-inch thick galvanized-steel sheet. See Division 07 Section "Sheet Metal Flashing and Trim". Temporarily fill or cover face opening of reglet to prevent intrusion of concrete or debris.
- D. Dovetail Anchor Slots: Provide as shown on Drawings. Hot-dip galvanized-steel sheet, not less than 0.034-inch thick, with bent tab anchors. Temporarily fill or cover face opening of slots to prevent intrusion of concrete or debris.

2.11 REPAIR MATERIALS

- A. Repair Underlayment: Cement-based, polymer-modified, self-leveling product that can be applied in thicknesses from 1/8 inch and that can be feathered at edges to match adjacent floor elevations.
 - 1. Cement Binder: ASTM C150/C150M, portland cement or hydraulic or blended hydraulic cement as defined in ASTM C219.
 - 2. Primer: Product of underlayment manufacturer recommended for substrate, conditions, and application.
 - 3. Aggregate: Well-graded, washed gravel, 1/8 to 1/4 inch or coarse sand as recommended by underlayment manufacturer.
 - 4. Compressive Strength: Not less than 4100 psi at 28 days when tested according to ASTM C109/C109M.
- B. Repair Overlayment: Cement-based, polymer-modified, self-leveling product that can be applied in thicknesses from 1/4 inch and that can be filled in over a scarified surface to match adjacent floor elevations.

- 1. Cement Binder: ASTM C150/C150M, portland cement or hydraulic or blended hydraulic cement as defined in ASTM C219.
- 2. Primer: Product of topping manufacturer recommended for substrate, conditions, and application.
- 3. Aggregate: Well-graded, washed gravel, 1/8 to 1/4 inch or coarse sand as recommended by topping manufacturer.
- 4. Compressive Strength: Not less than 5000 psi at 28 days when tested according to ASTM C109/C109M.
- C. Epoxy Bonding Adhesive: ASTM C881/C881M, two-component epoxy resin, capable of humid curing and bonding to damp surfaces, of class suitable for application temperature and of grade to suit requirements, and as follows:
 - 1. Types IV and V, load bearing, for bonding hardened or freshly mixed concrete to hardened concrete.
- 2.12 CONCRETE MIXTURES, GENERAL
 - A. Prepare design mixtures for each type and strength of concrete indicated on drawings, proportioned on the basis of laboratory trial mixture or field test data, or both, according to ACI 301 and CBC 2019 Chapter 19A.
 - 1. Use a qualified independent Testing Agency for preparing and reporting proposed mixture designs based on laboratory trial mixtures.
 - B. Cementitious Materials: Limit percentage, by weight, of cementitious materials other than portland cement in concrete as follows:
 - 1. Fly Ash: 25 percent maximum
 - a. Fly ash is not permitted in suspended slabs.
 - C. Water-soluble chloride ion content shall be determined by ASTM C1218/C1218M at age between 28 and 42 days. Submit documentation verifying compliance. Limit water-soluble, chloride-ion content in hardened concrete to:
 - 1. 1.00 percent by weight of cement for mild-reinforced concrete.
 - 2. 0.06 percent by weight of cement for post-tensioned concrete.
 - D. Admixtures: Use admixtures according to manufacturer's written instructions.
 - 1. Use water-reducing admixture in concrete, as required, for placement and workability.
 - 2. Use water-reducing and retarding admixture when required by high temperatures, low humidity, or other adverse placement conditions.
 - 3. Use water-reducing admixture in pumped concrete, concrete for parking structure slabs, concrete required to be watertight, and concrete with a water-cementitious materials ratio below 0.50.

2.13 FABRICATING REINFORCEMENT

A. Fabricate steel reinforcement according to CRSI's "Manual of Standard Practice."

2.14 CONCRETE MIXING

- A. Ready-Mixed Concrete: Measure, batch, mix, and deliver concrete according to ASTM C94/C94M, and furnish batch ticket information.
 - 1. When air temperature is between 85 and 90 deg F, reduce mixing and delivery time from 1-1/2 hours to 75 minutes; when air temperature is above 90 deg F, reduce mixing and delivery time to 60 minutes.

PART 3 - EXECUTION

3.01 FORMWORK

- A. Design, erect, shore, brace, and maintain formwork, according to ACI 301, to support vertical, lateral, static, and dynamic loads, and construction loads that might be applied, until structure can support such loads.
- B. Construct formwork so concrete members and structures are of size, shape, alignment, elevation, and position indicated, within tolerance limits of ACI 117, unless specified otherwise in the Contract Documents.
- C. Limit concrete surface irregularities, designated by ACI 347R as abrupt or gradual, as follows:
 - 1. Class A, 1/8 inch for smooth-formed finished surfaces.
 - 2. Class B, 1/4 inch for rough-formed finished surfaces.
- D. Construct forms tight enough to prevent loss of concrete mortar.
- E. Fabricate forms for easy removal without hammering or prying against concrete surfaces. Provide crush or wrecking plates where stripping may damage cast concrete surfaces. Provide top forms for inclined surfaces steeper than 1.5 horizontal to 1 vertical.
 - 1. Install keyways, reglets, recesses, and the like, for easy removal.
 - 2. Do not use rust-stained steel form-facing material.
- F. Set edge forms, bulkheads, and intermediate screed strips for slabs to achieve required elevations and slopes in finished concrete surfaces. Provide and secure units to support screed strips; use strike-off templates or compacting-type screeds.
- G. Provide temporary openings for cleanouts and inspection ports where interior area of formwork is inaccessible. Close openings with panels tightly fitted to forms and securely braced to prevent loss of concrete mortar. Locate temporary openings in forms at inconspicuous locations.
- H. Chamfer exterior corners and edges of permanently exposed concrete, unless otherwise indicated on Drawings.
- I. Form openings, chases, offsets, sinkages, keyways, reglets, blocking, screeds, and bulkheads required in the Work. Determine sizes and locations from trades providing such items.

- J. Clean forms and adjacent surfaces to receive concrete. Remove chips, wood, sawdust, dirt, and other debris just before placing concrete.
- K. Retighten forms and bracing before placing concrete, as required, to prevent mortar leaks and maintain proper alignment.
- L. Coat contact surfaces of forms with form-release agent, according to manufacturer's written instructions, before placing reinforcement.

3.02 EMBEDDED ITEMS

- A. Place and secure anchorage devices and other embedded items required for adjoining work that is attached to or supported by cast-in-place concrete. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 1. Install anchor rods, accurately located, to elevations required and complying with tolerances in Section 7.5 of AISC 303 "Code of Standard Practice for Steel Buildings and Bridges."

3.03 REMOVING AND REUSING FORMS

- A. General: Formwork for sides of beams, walls, columns, and similar parts of the Work that does not support weight of concrete may be removed after cumulatively curing at not less than 50 deg F for 24 hours after placing concrete. Concrete has to be hard enough to not be damaged by form-removal operations and curing and protection operations need to be maintained.
 - 1. Leave formwork for beam soffits, joists, slabs, and other structural elements that supports weight of concrete in place until concrete has achieved its 28-day design compressive strength.
 - 2. Remove forms only if shores have been arranged to permit removal of forms without loosening or disturbing shores.
- B. Clean and repair surfaces of forms to be reused in the Work. Split, frayed, delaminated, or otherwise damaged form-facing material will not be acceptable for exposed surfaces. Apply new form-release agent.
- C. When forms are reused, clean surfaces, remove fins and laitance, and tighten to close joints. Align and secure joints to avoid offsets. Do not use patched forms for exposed concrete surfaces unless approved by Architect.

3.04 VAPOR RETARDERS

- A. Sheet Vapor Retarders: Place, protect, and repair sheet vapor retarder according to ASTM E1643 and manufacturer's written instructions.
 - 1. Lap joints 6 inches and seal with manufacturer's recommended tape.
- B. Granular Course: [Cover vapor retarder with][Place vapor retarder over]4-inch bed of granular fill, material, moisten, and compact with mechanical equipment to elevation tolerances of plus 0 inch or minus 3/4 inch.
 - 1. Fine-Graded Granular Material: Place and compact a 1/2-inch layer of finegraded granular material over granular fill.

3.05 STEEL REINFORCEMENT

- A. General: Comply with CRSI's "Manual of Standard Practice" for placing reinforcement.
 - 1. Do not cut or puncture vapor retarder. Repair damage and reseal vapor retarder before placing concrete.
- B. Clean reinforcement of loose rust and mill scale, earth, ice, and other foreign materials that would reduce bond to concrete.
- C. Accurately position, support, and secure reinforcement against displacement. Locate and support reinforcement with bar supports to maintain minimum concrete cover. Do not tack weld crossing reinforcing bars.
 - 1. Weld reinforcing bars according to AWS D1.4/D1.4M, where indicated.
- D. Set wire ties with ends directed into concrete, not toward exposed concrete surfaces.
- E. Install welded wire reinforcement in longest practicable lengths on bar supports spaced to minimize sagging. Lap edges and ends of adjoining sheets at least one mesh spacing. Offset laps of adjoining sheet widths to prevent continuous laps in either direction. Lace overlaps with wire.

3.06 JOINTS

- A. General: Construct joints true to line with faces perpendicular to surface plane of concrete.
- B. Construction Joints: Install so strength and appearance of concrete are not impaired, at locations indicated or as approved by Architect.
 - 1. Place joints perpendicular to main reinforcement. Continue reinforcement across construction joints unless otherwise indicated.
 - 2. Form keyed joints as indicated. Embed keys at least 1-1/2 inches into concrete.
 - 3. Locate joints for beams, slabs, joists, and girders in the middle third of spans. Offset joints in girders a minimum distance of twice the beam width from a beam-girder intersection.
 - 4. Locate horizontal joints in walls and columns at underside of floors, slabs, beams, and girders and at the top of footings or floor slabs.
- C. Contraction Joints in Slabs-on-Grade: Form weakened-plane contraction joints, sectioning concrete into areas as indicated. Construct contraction joints for a depth equal to at least one-fourth of concrete thickness as follows:
 - 1. Grooved Joints: Form contraction joints after initial floating by grooving and finishing each edge of joint to a radius of 1/8 inch. Repeat grooving of contraction joints after applying surface finishes. Eliminate groover tool marks on concrete surfaces.
 - 2. Sawed Joints: Form contraction joints with power saws equipped with shatterproof abrasive or diamond-rimmed blades. Cut 1/8-inch-wide joints into concrete when cutting action will not tear, abrade, or otherwise damage surface and before concrete develops random contraction cracks.

- a. Perform saw-cutting before concrete starts to cool, as soon as the concrete surface is firm enough not to be torn or damaged by the blade, and before random drying-shrinkage cracks can from in the concrete slab. Joints produced by conventional dry- or wet-cut process shall be made within 4 hours in hot weather and within 12 hours in cold weather after the slab has been finished.
- D. Isolation Joints in Slabs-on-Grade: After removing formwork, install joint-filler strips at slab junctions with vertical surfaces, such as column pedestals, foundation walls, grade beams, and other locations, as indicated.
 - 1. Extend joint-filler strips full width and depth of joint, terminating flush with finished concrete surface unless otherwise indicated.
 - 2. Install joint-filler strips in lengths as long as practicable. Where more than one length is required, lace or clip sections together.
- E. Doweled Joints: Install dowel bars and support assemblies at joints where indicated. Lubricate or asphalt coat one-half of dowel length to prevent concrete bonding to one side of joint or use PVC dowel bar sleeve.

3.07 CONCRETE PLACEMENT

- A. Before placing concrete, verify that installation of formwork, reinforcement, and embedded items is complete and that required inspections have been performed.
- B. Before test sampling and placing concrete, water may be added at Project site, subject to limitations of ACI 301.
 - 1. Do not add water to concrete after adding high-range water-reducing admixtures to mixture.
- C. Deposit concrete continuously in one layer or in horizontal layers of such thickness that no new concrete will be placed on concrete that has hardened enough to cause seams or planes of weakness. If a section cannot be placed continuously, provide construction joints as indicated. Deposit concrete to avoid segregation.
 - 1. Deposit concrete in horizontal layers of depth to not exceed formwork design pressures and in a manner to avoid inclined construction joints.
 - 2. Consolidate placed concrete with mechanical vibrating equipment according to ACI 301.
 - 3. Do not use vibrators to transport concrete inside forms. Insert and withdraw vibrators vertically at uniformly spaced locations to rapidly penetrate placed layer and at least 6 inches into preceding layer. Do not insert vibrators into lower layers of concrete that have begun to lose plasticity. At each insertion, limit duration of vibration to time necessary to consolidate concrete and complete embedment of reinforcement and other embedded items without causing mixture constituents to segregate.
- D. Deposit and consolidate concrete for floors and slabs in a continuous operation, within limits of construction joints, until placement of a panel or section is complete.
 - 1. Consolidate concrete during placement operations so concrete is thoroughly worked around reinforcement and other embedded items and into corners.

- 2. Maintain reinforcement in position on chairs during concrete placement.
- 3. Screed slab surfaces with a straightedge and strike off to correct elevations.
- 4. Deviation from cross sectional thickness of suspended slabs shall not exceed ±1/4".
- 5. Deviation from elevation of suspended slabs before removal of supporting shores shall not exceed +3/8" nor -1/4".
- 6. Slope surfaces uniformly to drains where required.
- 7. Begin initial floating using bull floats or darbies to form a uniform and opentextured surface plane, before excess bleedwater appears on the surface. Do not further disturb slab surfaces before starting finishing operations.
- E. Cold-Weather Placement: Comply with ACI 306.1 and as follows. Protect concrete work from physical damage or reduced strength that could be caused by frost, freezing actions, or low temperatures.
 - 1. When average high and low temperature is expected to fall below 40 deg F for three successive days, maintain delivered concrete mixture temperature within the temperature range required by ACI 301.
 - 2. Do not use frozen materials or materials containing ice or snow. Do not place concrete on frozen subgrade or on subgrade containing frozen materials.
 - 3. Do not use calcium chloride, salt, or other materials containing antifreeze agents or chemical accelerators unless otherwise specified and approved in mixture designs.
- F. Hot-Weather Placement: Comply with ACI 301 and as follows:
 - 1. Maintain concrete temperature below 90 deg F at time of placement. Chilled mixing water or chopped ice may be used to control temperature, provided water equivalent of ice is calculated to total amount of mixing water. Using liquid nitrogen to cool concrete is Contractor's option.
 - 2. Fog-spray forms, steel reinforcement, and subgrade just before placing concrete. Keep subgrade uniformly moist without standing water, soft spots, or dry areas.

3.08 FINISHING FORMED SURFACES

- A. Rough-Formed Finish: As-cast concrete texture imparted by form-facing material with tie holes and defects repaired and patched. Remove fins and other projections that exceed specified limits on formed-surface irregularities.
 - 1. Apply to concrete surfaces not exposed to view.
- B. Smooth-Formed Finish: As-cast concrete texture imparted by form-facing material, arranged in an orderly and symmetrical manner with a minimum of seams. Repair and patch tie holes and defects. Remove fins and other projections that exceed specified limits on formed-surface irregularities.
 - 1. Apply to concrete surfaces exposed to view, to receive a rubbed finish, to be covered with a coating or covering material applied directly to concrete.
- C. Rubbed Finish: Apply the following to smooth-formed finished as-cast concrete where indicated:
 - 1. Smooth-Rubbed Finish: Not later than one day after form removal, moisten concrete surfaces and rub with carborundum brick or another abrasive until

producing a uniform color and texture. Do not apply cement grout other than that created by the rubbing process.

D. Related Unformed Surfaces: At tops of walls, horizontal offsets, and similar unformed surfaces adjacent to formed surfaces, strike off smooth and finish with a texture matching adjacent formed surfaces. Continue final surface treatment of formed surfaces uniformly across adjacent unformed surfaces unless otherwise indicated.

3.09 FINISHING FLOORS AND SLABS

- A. General: Comply with ACI 302.1R recommendations for screeding, restraightening, and finishing operations for concrete surfaces. Do not wet concrete surfaces.
- B. Scratch Finish: While still plastic, texture concrete surface that has been screeded and bull-floated or darbied. Use stiff brushes, brooms, or rakes to produce a profile amplitude of 1/4 inch in one direction.
 - 1. Apply scratch finish to surfaces to receive mortar setting beds for bonded cementitious floor finishes.
- C. Float Finish: Consolidate surface with power-driven floats or by hand floating if area is small or inaccessible to power driven floats. Restraighten, cut down high spots, and fill low spots. Repeat float passes and restraightening until surface is left with a uniform, smooth, granular texture.
 - 1. Apply float finish to surfaces to receive trowel finish and to be covered with fluid-applied or sheet waterproofing, or built-up or membrane roofing.
- D. Trowel Finish: After applying float finish, apply first troweling and consolidate concrete by hand or power-driven trowel. Continue troweling passes and restraighten until surface is free of trowel marks and uniform in texture and appearance. Grind smooth any surface defects that would telegraph through applied coatings or floor coverings.
 - 1. Apply a trowel finish to surfaces exposed to view or to be covered with resilient flooring, carpet, ceramic or quarry tile set over a cleavage membrane, paint, or another thin-film-finish coating system.
 - 2. Finish surfaces to the following tolerances, according to ASTM E1155, for a randomly trafficked floor surface:
 - Specified overall values (SOV) of flatness, F(F) 25; and of levelness, F(L) 20; with minimum local values (MLV) of flatness, F(F) 17; and of levelness, F(L) 15.
 - Specified overall values (SOV) of flatness, F(F) 35; and of levelness, F(L) 25; with minimum local values (MLV) of flatness, F(F) 24; and of levelness, F(L) 17; for surfaces to receive thin-set flooring.
 - 3. For floor installations 10,000 sq. ft. or less in total project area, finish and measure surface so gap at any point between concrete surface and an unleveled, freestanding, 10-ft.long straightedge resting on two high spots and placed anywhere on the surface does not exceed 1/4 inch (90 percent compliance) in accordance to ACI 117 Section 4.8.

- E. Trowel and Fine-Broom Finish: Apply a first trowel finish to surfaces where ceramic or quarry tile is to be installed by either thickset or thin-set method. While concrete is still plastic, slightly scarify surface with a fine broom.
 - 1. Comply with flatness and levelness tolerances for trowel-finished floor surfaces.
- F. Broom Finish: Apply a broom finish to exterior concrete platforms, steps, ramps, and elsewhere as indicated.
 - 1. Immediately after float finishing, slightly roughen trafficked surface by brooming with fiber-bristle broom perpendicular to main traffic route. Coordinate required final finish with Architect before application.
- G. Slip-Resistive Finish: Before final floating, apply slip-resistive aluminum granule finish where indicated and to concrete stair treads, platforms, and ramps. Apply according to manufacturer's written instructions and as follows:
 - 1. Uniformly spread 25 lbs./100 sq. ft. of dampened slip-resistive aluminum granules over surface in one or two applications. Tamp aggregate flush with surface, but do not force below surface.
 - 2. After broadcasting and tamping, apply float finish.
 - 3. After curing, lightly work surface with a steel wire brush or an abrasive stone and water to expose slip-resistive aluminum granules.
- H. Dry-Shake Floor Hardener Finish: After initial floating, apply dry-shake floor hardener to surfaces according to manufacturer's written instructions and as follows:
 - 1. Uniformly apply dry-shake floor hardener at a rate of 100 lbs./100 sq. ft. unless greater amount is recommended by manufacturer.
 - 2. Uniformly distribute approximately two-thirds of dry-shake floor hardener over surface by hand or with mechanical spreader, and embed by power floating. Follow power floating with a second dry-shake floor hardener application, uniformly distributing remainder of material, and embed by power floating.
 - 3. After final floating, apply a trowel finish. Cure concrete with curing compound recommended by dry-shake floor hardener manufacturer and apply immediately after final finishing.

3.10 MISCELLANEOUS CONCRETE ITEMS

- A. Filling In: Fill in holes and openings left in concrete structures after work of other trades is in place unless otherwise indicated. Mix, place, and cure concrete, as specified, to blend with in-place construction. Provide other miscellaneous concrete filling indicated or required to complete the Work.
- B. Curbs: Provide monolithic finish to interior curbs by stripping forms while concrete is still green and by steel-troweling surfaces to a hard, dense finish with corners, intersections, and terminations slightly rounded.
- C. Equipment Bases and Foundations: Provide machine and equipment bases and foundations as shown on Drawings. Set anchor bolts for machines and equipment at correct elevations, complying with diagrams or templates from manufacturer furnishing machines and equipment.

D. Steel Pan Stairs: Provide concrete fill for steel pan stair treads, landings, and associated items. Cast-in inserts and accessories as shown on Drawings. Screed, tamp, and trowel finish concrete surfaces.

3.11 CONCRETE PROTECTING AND CURING

- A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures. Comply with ACI 306.1 for cold-weather protection and ACI 301 for hot-weather protection during curing.
- B. Evaporation Retarder: Apply evaporation retarder to unformed concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x h before and during finishing operations. Apply according to manufacturer's written instructions after placing, screeding, and bull floating or darbying concrete, but before float finishing.
- C. Formed Surfaces: Cure formed concrete surfaces, including underside of beams, supported slabs, and other similar surfaces. If forms remain during curing period, moist cure after loosening forms. If removing forms before end of curing period, continue curing for the remainder of the curing period.
- D. Unformed Surfaces: Begin curing immediately after finishing concrete. Cure unformed surfaces, including floors and slabs, concrete floor toppings, and other surfaces.
- E. Cure concrete according to ACI 308.1, by one or a combination of the following methods:
 - 1. Moisture Curing: Keep surfaces continuously moist for not less than seven days with the following materials:
 - a. Water.
 - b. Continuous water-fog spray.
 - c. Absorptive cover, water saturated, and kept continuously wet. Cover concrete surfaces and edges with 12-inch lap over adjacent absorptive covers.
 - 2. Moisture-Retaining-Cover Curing: Cover concrete surfaces with moistureretaining cover for curing concrete, placed in widest practicable width, with sides and ends lapped at least 12 inches, and sealed by waterproof tape or adhesive. Cure for not less than seven days. Immediately repair any holes or tears during curing period using cover material and waterproof tape.
 - a. Moisture cure or use moisture-retaining covers to cure concrete surfaces to receive floor coverings.
 - b. Moisture cure or use moisture-retaining covers to cure concrete surfaces to receive penetrating liquid floor treatments.
 - c. Cure concrete surfaces to receive floor coverings with either a moisture-retaining cover or a curing compound that the manufacturer certifies will not interfere with bonding of floor covering used on Project.
 - 3. Curing Compound: Apply uniformly in continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas

subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating and repair damage during curing period.

3.12 LIQUID FLOOR TREATMENTS

- A. Penetrating Liquid Floor Treatment: Prepare, apply, and finish penetrating liquid floor treatment according to manufacturer's written instructions.
 - 1. Remove curing compounds, sealers, oil, dirt, laitance, and other contaminants and complete surface repairs.
 - 2. Do not apply liquid to concrete sooner than that recommended by manufacturer.
 - 3. Apply liquid until surface is saturated, scrubbing into surface until a gel forms; rewet; and repeat brooming or scrubbing. Rinse with water; remove excess material until surface is dry. Apply a second coat in a similar manner if surface is rough or porous.

3.13 JOINT FILLING

- A. Prepare, clean, and install joint filler according to manufacturer's written instructions.
- B. Remove dirt, debris, saw cuttings, curing compounds, and sealers from joints; leave contact faces of joint clean and dry.
- C. Install semirigid joint filler full depth in saw-cut joints and at least 2 inches deep in formed joints. Overfill joint and trim joint filler flush with top of joint after hardening.

3.14 CONCRETE SURFACE REPAIRS

- A. Defective Concrete: Repair and patch defective areas when approved by Architect. Remove and replace concrete that cannot be repaired and patched to Architect's approval.
- B. Patching Mortar: Mix dry-pack patching mortar, consisting of one part portland cement to two and one-half parts fine aggregate passing a No. 16 sieve, using only enough water for handling and placing.
- C. Repairing Formed Surfaces: Surface defects include color and texture irregularities, cracks, spalls, air bubbles, honeycombs, rock pockets, fins and other projections on the surface, and stains and other discolorations that cannot be removed by cleaning.
 - 1. Immediately after form removal, cut out honeycombs, rock pockets, and voids more than 1/2 inch in any dimension to solid concrete. Limit cut depth to 3/4 inch. Make edges of cuts perpendicular to concrete surface. Clean, dampen with water, and brush-coat holes and voids with bonding agent. Fill and compact with patching mortar before bonding agent has dried. Fill form-tie voids with patching mortar or cone plugs secured in place with bonding agent.
 - 2. Repair defects on surfaces exposed to view by blending white portland cement and standard portland cement so that, when dry, patching mortar will match surrounding color. Patch a test area at inconspicuous locations to

verify mixture and color match before proceeding with patching. Compact mortar in place and strike off slightly higher than surrounding surface.

- 3. Repair defects on concealed formed surfaces that affect concrete's durability and structural performance as determined by Architect.
- 4. Repair technique shall be tested on a mockup or surface to be concealed later, before repairing surfaces exposed to view, for approval by Architect.
- D. Repairing Unformed Surfaces: Test unformed surfaces, such as floors and slabs, for finish and verify surface tolerances specified for each surface. Correct low and high areas. Test surfaces sloped to drain for trueness of slope and smoothness; use a sloped template.
 - 1. Repair finished surfaces containing defects. Surface defects include spalls, popouts, honeycombs, rock pockets, crazing and cracks in excess of 0.01 inch wide or that penetrate to reinforcement or completely through unreinforced sections regardless of width, and other objectionable conditions.
 - 2. After concrete has cured at least 14 days, correct high areas by grinding.
 - 3. Correct localized low areas during or immediately after completing surface finishing operations by cutting out low areas and replacing with patching mortar. Finish repaired areas to blend into adjacent concrete.
 - 4. Correct other low areas scheduled to receive floor coverings with a repair underlayment. Prepare, mix, and apply repair underlayment and primer according to manufacturer's written instructions to produce a smooth, uniform, plane, and level surface. Feather edges to match adjacent floor elevations.
 - 5. Correct other low areas scheduled to remain exposed with a repair topping. Cut out low areas to ensure a minimum repair topping depth of 1/4 inch to match adjacent floor elevations. Prepare, mix, and apply repair topping and primer according to manufacturer's written instructions to produce a smooth, uniform, plane, and level surface.
 - 6. Repair defective areas, except random cracks and single holes 1 inch or less in diameter, by cutting out and replacing with fresh concrete. Remove defective areas with clean, square cuts and expose steel reinforcement with at least a 3/4-inch clearance all around. Dampen concrete surfaces in contact with patching concrete and apply bonding agent. Mix patching concrete of same materials and mixture as original concrete except without coarse aggregate. Place, compact, and finish to blend with adjacent finished concrete.
 - 7. Repair random cracks and single holes 1 inch or less in diameter with patching mortar. Groove top of cracks and cut out holes to sound concrete and clean off dust, dirt, and loose particles. Dampen cleaned concrete surfaces and apply bonding agent. Place patching mortar before bonding agent has dried. Compact patching mortar and finish to match adjacent concrete. Keep patched area continuously moist for at least 72 hours.
- E. Repair materials and installation not specified above may be used, subject to Architect's approval.

3.15 FIELD QUALITY CONTROL

- A. Testing and Inspecting: Owner will engage a qualified Testing Agency to perform field tests and inspections and prepare test reports.
- B. Inspections: Verify and inspect concrete Work as shown on Drawings.
- C. Concrete Tests: Testing of composite samples of fresh concrete obtained according to ASTM C172/C172M shall be performed according to the following requirements:
 - 1. Testing Frequency: Obtain at least one random composite sample for each 150 cu. yd. of concrete or 5,000 sq. ft. of surface area of slabs of walls, or fraction thereof, of each concrete mixture placed each day.
 - a. When frequency of testing will provide fewer than five compressivestrength tests for each concrete mixture, testing shall be conducted from at least five randomly selected batches or from each batch if fewer than five are used.
 - 2. Slump: ASTM C143/C143M; one test at point of placement for each composite sample, but not less than one test for each day's pour of each concrete mixture. Perform additional tests when concrete consistency appears to change.
 - 3. Air Content: ASTM C231/C231M, pressure method, for normal-weight concrete; [ASTM C173/C173M, volumetric method, for structural lightweight concrete;]one test for each composite sample, but not less than one test for each day's pour of each concrete mixture.
 - 4. Concrete Temperature: ASTM C1064/C1064M; one test hourly when air temperature is 40 deg F and below and when 80 deg F and above, and one test for each composite sample.
 - 5. Unit Weight: ASTM C567/C567M, fresh unit weight of structural lightweight concrete; one test for each composite sample, but not less than one test for each day's pour of each concrete mixture.
 - 6. Compression Test Specimens: ASTM C31/C31M.
 - a. Mild-Reinforced and Post-Tensioned Slabs and Beams: Cast and laboratory-cure five standard cylinder plus one spare standard cylinder specimens for each composite sample.
 - Cast and field-cure additional standard cylinder specimens to verify concrete strength for removal of shoring and reshoring in multistory construction. Number of field-cured cylinder specimens to be determined by Contractor.
 - Cast and field-cure additional standard cylinder specimens to verify concrete strength for stressing of tendons in posttensioned construction. Number of field-cured cylinder specimens to be determined by Contractor.
 - b. Shear Walls and Columns: Cast and laboratory-cure five standard cylinder plus one spare standard cylinder specimens for each composite sample.
 - c. Other Concrete Elements: Cast and laboratory-cure four standard cylinder plus one spare standard cylinder specimens for each composite sample.
 - 7. Compressive-Strength Tests: ASTM C39/C39M.

- a. Mild-Reinforced Concrete Slabs and Beams: Test one laboratorycured specimen at 4 days; one laboratory-cured specimen at 7 days or upon formwork stripping, whichever comes first; one laboratory-cured specimen at 14 days; and two laboratory-cured specimens at 28 days.
- b. Post-Tensioned Concrete Slabs and Beams: Test one laboratorycured specimen at age determined by contractor for tendon stressing; one laboratory-cured specimen upon formwork stripping or 7 days, whichever comes first; one laboratory-cured specimen at 14 days; and two laboratory-cured specimens at 28 days.
- c. Shear Walls, Columns and concrete pilaster: Test one laboratorycured specimen at 7 days, one laboratory-cured specimen at 56 days and one laboratory-cured specimen at 90 days; and two laboratorycured specimens at 28 days.
- d. Other Concrete Elements: Test two laboratory-cured specimens at 7 days and two laboratory-cured specimens at 28 days.
- e. A compressive-strength test at shall be the average compressive strength from a set of two specimens obtained from same composite and tested at the age indicated.
- 8. Strength of each concrete mixture will be satisfactory if every average of any three consecutive compressive-strength tests equals or exceeds specified compressive strength and no compressive-strength test value falls below specified compressive strength by more than 500 psi.
 - a. If 28-day compressive-strength test falls below satisfactory levels, strength test the spare cylinder at age determined by the Contractor and average with the strength of the 28-day specimens. The average strength of the three cylinders shall be considered one compressive-strength test.
- 9. Modulus of Elasticity Test Specimens: ASTM C31/C31M.
 - a. Shear walls,columns and concrete pilasters: Cast and field-cure eight two standard cylinder specimens plus two spares for each composite sample.
 - 1) Composite samples (consisting of 10 standard field-cured cylinder specimens) for each concrete strength, each concrete mix design and for each aggregate source, shall be randomly selected from every five floors, with two random composite samples minimum per building.
- 10. Test results shall be reported in writing to Architect, concrete manufacturer, and Contractor within 48 hours of testing.
 - a. Reports of compressive-strength tests shall contain Project identification name and number, date of concrete placement, name of concrete Testing Agency, location of concrete batch in Work, design compressive strength at 28 days, concrete mixture proportions and materials, compressive breaking strength, and type of break for each age tested.
 - b. Reports of modulus of elasticity tests shall contain Project identification name and number, mix identification number, specimen identification number, curing and environmental history of specimen, date of test, name of Testing Agency, and plot of the results with age of concrete as the abscissa and modulus of elasticity as the ordinate.

- 11. Nondestructive Testing: Impact hammer, sonoscope, or other nondestructive device may be permitted by Architect but will not be used as sole basis for approval or rejection of concrete.
- 12. Additional Tests: Testing Agency shall make additional tests of concrete when test results indicate that slump, air entrainment, compressive strengths, or other requirements have not been met, as directed by Architect. Testing Agency may conduct tests to determine adequacy of concrete by cored cylinders complying with ASTM C42/C42M or by other methods as directed by Architect.
- 13. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.
- 14. Correct deficiencies in the Work that test reports and inspections indicate do not comply with the Contract Documents.
- D. Measure floor and slab flatness and levelness according to ASTM E1155 within 24 hours of finishing.
- 3.16 PROTECTION OF LIQUID FLOOR TREATMENTS
 - A. Protect liquid floor treatment from damage and wear during the remainder of construction period. Use protective methods and materials, including temporary covering, recommended in writing by liquid floor treatments installer.

END OF SECTION

SECTION 05 12 00

STRUCTURAL STEEL FRAMING

PART 1 - GENERAL

- 1.01 RELATED DOCUMENTS
 - A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- 1.02 SUMMARY
 - A. Section Includes:
 - 1. Structural steel.
 - 2. Grout.
- 1.03 DEFINITIONS
 - A. Structural Steel. Elements of structural-steel frame, as classified by AISC 303, "Code of Standard Practice for Steel Buildings and Bridges."
 - B. Seismic-Load-Resisting System: Elements of structural-steel frame designated as "SFRS" or elements along grid lines designated as "SFRS" on Drawings, including columns, beams, and braces and their connections.
 - C. Heavy Sections: Rolled and built-up sections as follows:
 - 1. Shapes included in ASTM A 6/A 6M with flanges thicker than 1-1/2 inches (38 mm).
 - 2. Welded built-up members with plates thicker than 2 inches (50 mm).
 - 3. Column base plates thicker than 2 inches (50 mm).
 - D. Protected Zone: Structural members or portions of structural members of the SFRS indicated as "Protected Zone" on Drawings. Connections of structural and nonstructural elements to protected zones are limited.
 - E. Demand Critical Welds: Those welds, the failure of which would result in significant degradation of the strength and stiffness of the Seismic-Load-Resisting System and which are indicated as "Demand Critical" or "Seismic Critical" on Drawings.
- 1.04 ACTION SUBMITTALS
 - A. Product Data: For each type of product indicated.
 - B. Shop Drawings: Show fabrication of structural-steel components.
 - 1. Include details of cuts, connections, splices, camber, holes, and other pertinent data.
 - 2. Include embedment drawings.

- 3. Indicate welds by standard AWS symbols, distinguishing between shop and field welds, and show size, length, and type of each weld. Show backing bars that are to be removed and supplemental fillet welds where backing bars are to remain.
- 4. Indicate type, size, and length of bolts, distinguishing between shop and field bolts. Identify pretensioned and slip-critical high-strength bolted connections.
- 5. Identify members and connections of the seismic-load-resisting system.
- 6. Indicate locations and dimensions of protected zones.
- 7. Identify demand critical welds.
- C. Welding Procedure Specifications (WPSs) and Procedure Qualification Records (PQRs): Provide according to AWS D1.1/D1.1M, "Structural Welding Code Steel," for each welded joint whether prequalified or qualified by testing. For demand critical welds include the following:
 - 1. One or more combination of welding variables (e.g. power source, volt, amp, travel speed, etc.) that produces heat input within the range used for the WPS Heat Input Envelope Test.
 - 2. Electrode manufacturer and trade name.
- 1.05 INFORMATIONAL SUBMITTALS
 - A. Qualification Data: For qualified Installer.
 - B. Welding certificates.
 - C. Paint Compatibility Certificates: From manufacturers of topcoats applied over shop primers, certifying that shop primers are compatible with topcoats.
 - D. Mill test reports for structural steel, including chemical and physical properties.
 - E. Product Test Reports: For the following:
 - 1. Bolts, nuts, and washers including mechanical properties and chemical analysis.
 - 2. Direct-tension indicators.
 - 3. Tension-control, high-strength bolt-nut-washer assemblies.
 - 4. Shear stud connectors.
 - 5. Shop primers.
 - 6. Nonshrink grout.
 - F. Source quality-control reports.
- 1.06 QUALITY ASSURANCE
 - A. Fabricator Qualifications: A qualified fabricator that participates in the AISC Quality Certification Program and is designated an AISC-Certified Plant, Category STD.
 - B. Installer Qualifications: A qualified installer who participates in the AISC Quality Certification Program and is designated an AISC-Certified Erector, Category ACSE.
 - C. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
 - 1. Welders and welding operators performing work on bottom-flange, demandcritical welds shall pass the supplemental welder qualification testing, as required

by AWS D1.8. FCAW-S and FCAW-G shall be considered separate processes for welding personnel qualification.

- D. Comply with applicable provisions of the following specifications and documents:
 - 1. AISC 303.
 - 2. AISC 341 and AISC 341s1.
 - 3. AISC 358.
 - 4. AISC 360.
 - 5. AWS D1.1/D1.1M.
 - 6. AWS D1.8/D1.8M.
- E. Preinstallation Conference: Conduct conference at Project site.
- 1.07 DELIVERY, STORAGE, AND HANDLING
 - A. Store materials to permit easy access for inspection and identification. Keep steel members off ground and spaced by using pallets, dunnage, or other supports and spacers. Protect steel members and packaged materials from corrosion and deterioration.
 - 1. Do not store materials on structure in a manner that might cause distortion, damage, or overload to members or supporting structures. Repair or replace damaged materials or structures as directed.
 - B. Store fasteners in a protected place in sealed containers with manufacturer's labels intact.
 - 1. Fasteners may be repackaged provided Owner's Testing Agency observes repackaging and seals containers.
 - 2. Clean and relubricate bolts and nuts that become dry or rusty before use.
 - 3. Comply with manufacturers' written recommendations for cleaning and lubricating ASTM F 1852 fasteners and for retesting fasteners after lubrication.

1.08 COORDINATION

- A. Coordinate selection of shop primers with topcoats to be applied over them. Comply with paint and coating manufacturers' recommendations to ensure that shop primers and topcoats are compatible with one another.
- B. Coordinate installation of anchorage items to be embedded in or attached to other construction without delaying the Work. Provide setting diagrams, sheet metal templates, instructions, and directions for installation.

PART 2 - PRODUCTS

- 2.01 STRUCTURAL-STEEL MATERIALS
 - A. Recycled Content of Steel Products: Provide products with an average recycled content of steel products so postconsumer recycled content plus one-half of preconsumer recycled content is not less than the following:
 - 1. W-Shapes: 60 percent.
 - 2. Channels, Angles, M, S-Shapes: 60 percent.

- 3. Plates and Bars: 25 percent.
- 4. Cold-Formed Hollow Structural Sections: 25 percent.
- 5. Steel Pipe: 25 percent.
- 6. All Other Steel Materials: 25 percent.
- B. W-Shapes: ASTM A 992/A 992M.
- C. Channels, Angles, M-, S-Shapes: ASTM A 36/A 36M.
- D. Plates and Bars: ASTM A 36/A 36M, typical; ASTM A 572/A 572M, Grade 50, when used in SLRS connection (345).
- E. Cold-Formed Hollow Structural Sections: ASTM A 500, Grade B, structural tubing.
- F. Steel Pipe: ASTM A 53/A 53M, Type E or S, Grade B.1. Finish: Black [except where indicated to be galvanized].
- G. Welding Electrodes: Comply with AWS requirements.
- 2.02 BOLTS, CONNECTORS, AND ANCHORS
 - A. Shear Connectors: ASTM A 108, Grades 1010 through 1020, headed-stud type, coldfinished carbon steel; AWS D1.1/D1.1M, Type B.
 - B. Headed Anchor Rods: ASTM F 1554, Grade 36, typical; ASTM F 1554, Grade 55, weldable, when used in SLRS; straight.
 - 1. Nuts: ASTM A 563 (ASTM A 563M) heavy-hex carbon steel.
 - 2. Plate Washers: ASTM A 36/A 36M carbon steel.
 - 3. Washers: ASTM F 436 (ASTM F 436M), Type 1, harden d carbon steel.
 - 4. Finish: Plain.
 - C. Threaded Rods: ASTM A 36/A 36M.
 - 1. Nuts: ASTM A 563 (ASTM A 563M) heavy-hex carbon steel.
 - 2. Washers: ASTM F 436 (ASTM F 436M), Type 1, hardened carbon steel.
 - 3. Finish: Plain.
 - D. Clevises and Turnbuckles: Made from cold-finished carbon steel bars, ASTM A 108, Grade 1035.
 - E. Eye Bolts and Nuts: Made from cold-finished carbon steel bars, ASTM A 108, Grade 1030.
 - F. Sleeve Nuts: Made from cold-finished carbon steel bars, ASTM A 108, Grade 1018.
 - G. Structural Slide Bearings: Low-friction assemblies, of configuration indicated, that provide vertical transfer of loads and allow horizontal movement along one or two axes.
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product.
 - 2. Mating Surfaces: PTFE and PTFE.
 - 3. Coefficient of Friction: Not more than 0.06 at 2,000 psi bearing pressure.
 - 4. Design Bearing Pressure: Not greater than 2,000 psi (13.7 MPa).

2.03 PRIMER

- A. Low-Emitting Materials: Paints and coatings shall comply with the testing and product requirements of the California Department of Health Services "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers", including 2004 Addenda.
- B. Primer: SSPC-Paint 25, Type II, zinc oxide, alkyd, linseed oil primer.
- C. Galvanizing Repair Paint: ASTM A 780.

2.04 GROUT

- A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive and nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.
- 2.05 FABRICATION
 - A. Structural Steel: Fabricate and assemble in shop to greatest extent possible. Fabricate according to AISC's "Code of Standard Practice for Steel Buildings and Bridges" and AISC 360.
 - 1. Camber structural-steel members where indicated.
 - 2. Fabricate beams with rolling camber up.
 - 3. Identify high-strength structural steel according to ASTM A 6/A 6M and maintain markings until structural steel has been erected.
 - 4. Mark and match-mark materials for field assembly.
 - 5. Complete structural-steel assemblies, including welding of units, before starting shop-priming operations.
 - B. Thermal Cutting: Perform thermal cutting by machine to greatest extent possible.
 - 1. Plane thermally cut edges to be welded to comply with requirements in AWS D1.1/D1.1M.
 - C. Bolt Holes: Cut, drill, or punch standard bolt holes perpendicular to metal surfaces.
 - D. Finishing: Accurately finish ends of columns and other members transmitting bearing loads.
 - E. Cleaning: Clean and prepare steel surfaces that are to remain unpainted according to SSPC-SP 1, "Solvent Cleaning."
 - F. Shear Connectors: Prepare steel surfaces as recommended by manufacturer of shear connectors. Use automatic end welding of headed-stud shear connectors according to AWS D1.1/D1.1M and manufacturer's written instructions.
 - G. Holes: Provide holes required for securing other work to structural steel and for other work to pass through steel framing members.
 - 1. Cut, drill, or punch holes perpendicular to steel surfaces. Do not thermally cut bolt holes or enlarge holes by burning.

- 2. Baseplate Holes: Cut, drill, mechanically thermal cut, or punch holes perpendicular to steel surfaces.
- 3. Weld threaded nuts to framing and other specialty items indicated to receive other work.

2.06 SHOP CONNECTIONS

- A. High-Strength Bolts: Shop install high-strength bolts according to RCSC "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts" for type of bolt and type of joint specified.
 - 1. Joint Type: Snug tightened unless noted otherwise on Drawings.
- B. Weld Connections: Comply with AWS D1.1/D1.1M and AWS D1.8/D1.8M for tolerances, appearances, welding procedure specifications, weld quality, and methods used in correcting welding work.
 - 1. Assemble and weld built-up sections by methods that will maintain true alignment of axes without exceeding tolerances in AISC 303 for mill material.

2.07 SHOP PRIMING

- A. Shop prime steel surfaces except the following:
 - 1. Surfaces embedded in concrete or mortar. Extend priming of partially embedded members to a depth of 2 inches (50 mm).
 - 2. Surfaces to be field welded.
 - 3. Top flange of beams supporting steel decking.
 - 4. Surfaces to be high-strength bolted with slip-critical connections.
 - 5. Surfaces to receive sprayed fire-resistive materials (applied fireproofing).
 - 6. Galvanized surfaces.
- B. Surface Preparation: Clean surfaces to be painted. Remove loose rust and mill scale and spatter, slag, or flux deposits. Prepare surfaces according to the following specifications and standards:
 - 1. SSPC-SP 2, "Hand Tool Cleaning."
 - 2. SSPC-SP 3, "Power Tool Cleaning."
- C. Priming: Immediately after surface preparation, apply primer according to manufacturer's written instructions and at rate recommended by SSPC to provide a minimum dry film thickness of 1.5 mils (0.038 mm). Use priming methods that result in full coverage of joints, corners, edges, and exposed surfaces.

2.08 GALVANIZING

- A. Hot-Dip Galvanized Finish: Apply zinc coating by the hot-dip process to structural steel according to ASTM A 123/A 123M.
 - 1. Fill vent and drain holes that will be exposed in the finished Work unless they will function as weep holes, by plugging with zinc solder and filing off smooth.
PART 3 - EXECUTION

3.01 EXAMINATION

- A. Verify, with steel Erector present, elevations of concrete- and masonry-bearing surfaces and locations of anchor rods, bearing plates, and other embedments for compliance with requirements.
 - 1. Prepare a certified survey of bearing surfaces, anchor rods, bearing plates, and other embedments showing dimensions, locations, angles, and elevations.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 PREPARATION

A. Determine, furnish and install all temporary supports, such as temporary guys, beams, braces, falsework, cribbing or other elements required for the erection operation. These temporary supports shall be sufficient to secure the bare structural steel framing or any portion thereof against loads that are likely to be encountered during erection, including those due to wind and those that result from erection operations. Remove temporary supports when permanent structural steel, connections, and bracing are in place unless otherwise indicated.

3.03 ERECTION

- A. Set structural steel accurately in locations and to elevations indicated and according to AISC 303 and AISC 360.
- B. Base Bearing and Leveling Plates: Clean concrete- and masonry-bearing surfaces of bond-reducing materials, and roughen surfaces prior to setting plates. Clean bottom surface of plates.
 - 1. Set plates for structural members on wedges, shims, or setting nuts as required.
 - 2. Snug-tighten anchor rods after supported members have been positioned and plumbed. Do not remove wedges or shims but, if protruding, cut off flush with edge of plate before packing with grout.
 - 3. Promptly pack grout solidly between bearing surfaces and plates so no voids remain. Neatly finish exposed surfaces; protect grout and allow to cure. Comply with manufacturer's written installation instructions for shrinkage-resistant grouts.
- C. Maintain erection tolerances of structural steel within AISC's "Code of Standard Practice for Steel Buildings and Bridges."
- D. Align and adjust various members that form part of complete frame or structure before permanently fastening. Before assembly, clean bearing surfaces and other surfaces that will be in permanent contact with members. Perform necessary adjustments to compensate for discrepancies in elevations and alignment.
 - 1. Level and plumb individual members of structure.
 - 2. Make allowances for difference between temperature at time of erection and mean temperature when structure is completed and in service.
- E. Splice members only where indicated.

- F. Do not use thermal cutting during erection unless approved by Architect. Finish thermally cut sections within smoothness limits in AWS D1.1/D1.1M.
- G. Do not enlarge unfair holes in members by burning or using drift pins. Ream holes that must be enlarged to admit bolts.
- H. Shear Connectors: Prepare steel surfaces as recommended by manufacturer of shear connectors. Use automatic end welding of headed-stud shear connectors according to AWS D1.1/D1.1M and manufacturer's written instructions.

3.04 FIELD CONNECTIONS

- A. High-Strength Bolts: Install high-strength bolts according to RCSC "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts" for type of bolt and type of joint specified.
 - 1. Joint Type: Snug tightened unless noted otherwise on Drawings.
- B. Weld Connections: Comply with AWS D1.1/D1.1M and AWS D1.8/D1.8M for tolerances, appearances, welding procedure specifications, weld quality, and methods used in correcting welding work.
 - 1. Comply with AISC 303 and AISC 360 for bearing, alignment, adequacy of temporary connections, and removal of paint on surfaces adjacent to field welds.
 - 2. Remove backing bars or runoff tabs where indicated, back gouge, and grind steel smooth.
 - 3. Assemble and weld built-up sections by methods that will maintain true alignment of axes without exceeding tolerances in AISC's "Code of Standard Practice for Steel Buildings and Bridges" for mill material.

3.05 FIELD QUALITY CONTROL

- A. Testing and Inspecting: Owner will engage a qualified independent Testing Agency to inspect field welds and high-strength bolted connections and prepare test reports.
- B. Inspections: Verify and inspect structural steel Work as shown on Drawings.
- C. Bolted Connections: Bolted connections will be tested and inspected according to RCSC "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts."
- D. Welded Connections: Field welds will be visually inspected according to AWS D1.1/D1.1M.
 - 1. In addition to visual inspection, field welds will be tested and inspected according to AWS D1.1/D1.1M and the following inspection procedures, at Testing Agency's option:
 - a. Liquid Penetrant Inspection: ASTM E 165.
 - b. Magnetic Particle Inspection: ASTM E 709; performed on root pass and on finished weld. Cracks or zones of incomplete fusion or penetration will not be accepted.
 - c. Ultrasonic Inspection: ASTM E 164.
- E. SFRS Connections: Test and inspect SFRS connection elements as indicated in accordance to AISC 341, AWS D1.1/D1.1M and AWS D1.8/D1.8M.

- F. In addition to visual inspection, test and inspect field-welded shear connectors according to requirements in AWS D1.1/D1.1M for stud welding and as follows:
 - 1. Perform bend tests if visual inspections reveal either a less-than-continuous 360degree flash or welding repairs to any shear connector.
 - 2. Testing Agency, where warranted, may select a reasonable number of additional studs to be subjected to the bend tests.
- G. Correct deficiencies in Work that test reports and inspections indicate does not comply with the Contract Documents.
- 3.06 REPAIRS AND PROTECTION
 - A. Galvanized Surfaces: Clean areas where galvanizing is damaged or missing and repair galvanizing to comply with ASTM A 780.
 - B. Touchup Painting: Immediately after erection, clean exposed areas where primer is damaged or missing and paint with the same material as used for shop painting to comply with SSPC-PA 1 for touching up shop-painted surfaces.
 - 1. Clean and prepare surfaces by SSPC-SP 2 hand-tool cleaning or SSPC-SP 3 power-tool cleaning.

END OF SECTION

THIS PAGE WAS LEFT INTENTIONALLY BLANK.

SECTION 07 44 16

PORCELAIN ENAMELED FACED PANELS

PART 1 - GENERAL

1.01 SUMMARY

1.

- A. Section Includes
 - Porcelain enamel panels
 - a. Faced both sides
 - b. Insulated core

1.02 REFERENCE STANDARDS

- A. Conform to current adopted reference standards by date of issue of the current code cycle and the date of the Contract Documents.
- B. AHA American Hardboard Association
 - 1. ANSI/AHA A135.4
- C. ASTM International
 - 1. A 424 Steel, Sheet, for Porcelain Enameling
 - 2. B 209 Aluminum and Aluminum-Alloy Sheet and Plate
 - 3. C 282 Acid Resistance of Porcelain Enamels (Citric Acid Spot Test)
 - 4. C 283 Resistance of Porcelain Enameled Utensils to Boiling Acid
 - 5. C 448 Abrasion Resistance of Porcelain Enamels
 - 6. C 481 Laboratory Aging of Sandwich Constructions
 - 7. C 538 Color Retention of Red, Orange, and Yellow Porcelain Enamels
 - 8. C 743 Continuity of Porcelain Enamel Coatings
 - 9. C 1289 Faced Rigid Cellular Polyisocyanurate Thermal Insulation Board
 - 10. E 84 Surface Burning Characteristics of Building Materials
- D. PEI Porcelain Enamel Institute
 - 1. PEI 1001 (ALS 100) Specification for Architectural Porcelain Enamel
 - 2. Additional PEI standards as applicable

1.03 SUBMITTALS

A. Product Data: Manufacturers' catalog data for each type of product indicated; include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each type of panel and accessory.

- B. Samples
 - 1. Metal Panels: 12 inches square, indicating each type of panel construction
 - a. Additional colors: If multiple colors are indicated for panels of same type, additional colors shall be submitted on manufacturer's standard color chips, but not less than 2- by 3-inches, on metal substrate.
- C. Certificates: Manufacturer's certification of compliance
- D. Test and Evaluation Reports: Independent laboratory test reports for specified criteria
- E. Manufacturers' Instructions: Fabrication, handling, and installation instructions
- F. Qualification Statements: Manufacturer and installer
- G. Informational Submittal: Reference copies of standards issued by the Porcelain Enamel Institute to which the manufacturer is certifying compliance
- H. Closeout Submittals
 - 1. Manufacturer's cleaning and maintenance instructions
 - 2. Executed Warranty

1.04 QUALITY ASSURANCE

- A. Qualifications
 - 1. Manufacturer: Minimum of five (5) years experience in manufacturing porcelain enamel panels and accessory products
 - 2. [Installer: Approved and certified by the wall panel manufacturer prior to beginning the installation of the metal wall system
- B. Certifications: Manufacturer shall certify in writing that porcelain enameling has been performed in accordance with applicable PEI standards, and shall make copies of said standards available for reference and comparison.
- 1.05 WARRANTY
 - A. Provide five year manufacturer's warranty. Cover complete system for failure to meet specified requirements.
- PART 2 PRODUCTS
- 2.01 PORCELAIN ENAMEL PANELS
 - A. Manufacturers
 - 1. Products of following manufacturer form basis for design and quality intended: a. Mapes Industries Inc, Lincoln, NE
 - 2. Or equal as approved in accordance with Division 01, General Requirements for substitutions.

- B. Basis-of-Design: Mapes-R:
 - 1. Description:
 - a. Insulated Panels: Smooth porcelain enameled steel sheet laminated to layers of 1/8-inch tempered hardboard, laminated to both sides of polyisocyanurate insulation core; total thickness 1-inch.
 - 2. Materials
 - a. Steel: ASTM A 424 Porcelain Enameling Sheet, Type I, Commercial Steel, 18 gauge (1.2 mm), stretcher level before fabrication.
 - Enamel: Substantially vitreous inorganic coating bonded to metal by fusion at a temperature above 1000 degrees F (538 degrees C), in accordance with PEI standards
 - c. Tempered hardboard: AHA A135.4
 - d. Polyisocyanurate insulation: ASTM C 1289, Type II, Class 1, Grade 2
 - e. Laminating adhesives: Manufacturer's standard adhesives suitable for performance characteristics specified
 - 3. Finish: Anodized Finish: Clear, Class 1, aluminum anodize finish.

2.02 GLAZING ACCESSORIES

- A. Setting Blocks: 80-90 Shore A durometer hardness, length of 0.1 inch for each square foot of glazing or minimum 4 inch x width of glazing rabbet space minus 1/16 inch x height to suit glazing method and pane weight and area.
- B. Spacer Shims: 50-60 Shore A durometer hardness, minimum 3 inch long x one half the height of the glazing stop x thickness to suit application, self-adhesive on one side.
- C. Glazing Tape: Preformed butyl compound with integral resilient tube spacing device; 10 15 Shore A durometer hardness; coiled on release paper; black color.
- D. Sealants: as specified in Section 07 92 00

PART 3 - EXECUTION

3.01 INSPECTION

- A. Verify wall openings and adjoining air and vapor seal materials are ready to receive work of this Section.
- B. Beginning of installation means acceptance of existing conditions.
- C. Verify prepared openings.
- D. Verify that openings for glazing are correctly sized and within tolerance.
- E. Verify that surfaces of glazing channels or recesses are clean, free of obstructions and ready to receive glazing.

3.02 PREPARATION

- A. Clean contact surfaces with solvent and wipe dry.
- B. Seal porous glazing channels or recesses with substrate compatible primer or sealer.
- C. Prime surfaces scheduled to receive sealant.

3.03 INSTALLATION

- A. Install insulated porcelain enamel panels in accordance with manufacturer's instructions.
- B. Use anchorage devices to securely attach frame assembly to structure.
- C. Align assembly plumb and level, free of warp or twist. Maintain assembly dimensional tolerances, aligning with adjacent work.
- D. Install perimeter two component polyurethane type sealant, backing materials, and installation requirements in accordance with Section 07 92 00. Color shall match adjacent aluminum finish.

3.04 EXTERIOR - WET METHOD (SEALANT AND SEALANT)

- A. Place setting blocks at 1/4 points and install glazing pane or unit.
- B. Install removable stops with glazing centered in space by inserting spacer shims both sides at 24 inch intervals, 1/4 inch below sight line.
- C. Fill gaps between glazing and stops with silicone type sealant to depth of bite on glazing, but not more than 3/8 inch below sight line to ensure full contact with glazing and continue the air and vapor seal.
- D. Apply sealant to uniform line, flush with sight line. Tool or wipe sealant surface smooth.

3.05 CLEANING

- A. Wash down exposed surfaces using a solution of mild detergent in warm water, applied with soft, clean wiping cloths. Take care to remove dirt from corners. Wipe surfaces clean.
- B. Remove excess sealant by moderate use of mineral spirits or other solvent acceptable to sealant manufacturer.

END OF SECTION

SECTION 07 92 00

JOINT SEALANTS

PART 1 - GENERAL

- 1.01 SECTION INCLUDES
 - A. Preparing substrate surfaces.
 - B. Sealant and joint backing.
- 1.02 REFERENCE STANDARDS
 - A. Conform to current adopted reference standards by date of issue of the current code cycle and the date of the Contract Documents.
 - B. ASTM C834 Latex Sealing Compounds.
 - C. ASTM C881 Epoxy-Resin Base Bonding Systems for Concrete.
 - D. ASTM C919 Use of Sealants in Acoustical Applications.
 - E. ASTM C920 Elastomeric Joint Sealants.
 - F. ASTM D1056 Flexible Cellular Materials Sponge or Expanded Rubber.
 - G. ASTM C1193 Standard Guide for Use of Joint Sealants.
 - H. ASTM C1330 Cylindrical Sealant Backing for Use with Cold Liquid-Applied Sealants.
 - I. ASTM C1635 Standard Test Method to Evaluate Adhesion/Cohesion Properties of a Sealant at Fixed Extensions
 - J. SWRI (Sealant, Waterproofing and Restoration Institute) Sealant and Caulking Guide Specification (www.SWRIONLINE.org).
 - K. SDAPCD San Diego County Air Pollution Control District, Regulation IV.
- 1.03 SUBMITTALS
 - A. Product Data: Provide data indicating sealant chemical characteristics, performance criteria, substrate preparation, limitations, and color availability.
 - B. Manufacturer's installation Instructions: Indicate special procedures, surface preparation, and perimeter conditions requiring special attention.

1.04 QUALITY ASSURANCE

- A. Perform Work in accordance with sealant manufacturer's requirements for preparation of surfaces and material installation instructions.
- B. Perform acoustical sealant application work in accordance with ASTM C919.
- C. Prepare sample joints in the construction to demonstrate to the Architect the quality of the Work to be performed. Accepted sample joints will be used to judge the quality of the Work.
- D. Qualifications
 - 1. Manufacturer: Company specializing in manufacturing the Products specified in this Section with minimum three years' experience.
 - 2. Applicator:
 - a. Pre-qualified applicator specializing in performing Work of this Section with minimum three years' experience and approved by manufacturer.
 - b. This applicator shall be licensed joint sealing specialty Contractor.
 - c. Submit list of completed local projects of similar sealant applications.

1.05 ENVIRONMENTAL REQUIREMENTS

- A. Maintain temperature and humidity recommended by the sealant manufacturer during and after installation.
- 1.06 COORDINATION
 - A. Coordinate the Work with all Sections referencing this Section.
- 1.07 WARRANTY
 - A. Provide five-year product warranty, submit under provisions of Division 01, General Requirements.
 - B. Provide two-year installer's warranty, submit under provisions of Division 01, General Requirements.
 - C. Warranty: Include coverage for installed sealants and accessories which fail to achieve air tight seal, water tight seal, exhibit loss of adhesion or cohesion, or do not cure.
 - D. Upon written notification of failure due to defective materials or application, repair or replace failure to the approval of the Architect and at no cost to Owner.

PART 2 - PRODUCTS

2.01 SEALANT AND MATERIAL MANUFACTURERS

A. Following is list of acceptable manufacturers of sealants and sealant materials. Inclusion in this list is not intended to imply that all manufacturers make all products. Products made by listed manufacturers must comply with all specified requirements.

5015037 Palomar College - Welding Yard Improvements

- 1. Bostik Construction Products.
- 2. Dow Chemical Corporation (www.dowcorning.com/construction)
- 3. Sika Corporation.
- 4. General Electric Company.
- 5. W.R. Meadows, Inc.
- 6. Pecora Corporation.
- 7. Mameco International.
- 8. Tremco/Vulkem.
- 9. Sonneborn, ChemRex Inc.
- 10. Hilti
- 11. 3M Company
- B. Substitutions: Under provisions of Division 01, General Requirements.
- 2.02 JOINT AND SURFACE TYPES
 - A. Concrete Surfaces exceeding 20 square feet.
 - 1. Single-Component Silicone (Neutral-curing,): ASTM C 920 Class 25, Type S, Grade P, Use T, and O (self-leveling).
- 2.03 SEALANT COLORS
 - A. Provide materials matching colors indicated or if no color is indicated, matching the color samples selected from those submitted to the Architect.
- 2.04 ACCESSORIES
 - A. Primer: Non-staining type, recommended by sealant manufacturer to suit application.
 - B. Joint Cleaner: Non-corrosive and non-staining type, recommended by sealant manufacturer; compatible with joint forming materials.
 - C. Joint Backing Rod: ASTM C1330 Class C, closed cell polyethylene cylindrical backer rod; oversized 30 to 50 percent larger than joint width, Green Rod by Nomaco Inc., Zebulon, NC, Backer Rod Mfg. Denver, CO or equal.
 - D. Elastomeric Tubing Sealant Backing: ASTM D1056 Flexible Cellular Materials Sponge or Expanded Rubber.
 - E. Bond Breaker: Pressure sensitive tape recommended by sealant manufacturer to suit application.
 - F. Filler: Mineral fiber board; ASTM C612, Class1, thickness same as joint, depth to fill void completely behind backer-up rod.

PART 3 - EXECUTION

- 3.01 EXAMINATION
 - A. Verify that substrate surfaces and joint openings are ready to receive Work.

B. Verify that joint backing and release tapes are compatible with sealant.

3.02 PREPARATION

- A. Remove loose materials and foreign matter which might impair adhesion of sealant.
- B. Clean and prime joints in accordance with manufacturer's instructions.
- C. Perform preparation in accordance with manufacturer's instructions.
- D. Protect elements surrounding the Work of this Section from damage or disfiguration.
- E. At deep joints install filler material to fill space behind the back-up rod and position the rod at proper depth.

3.03 INSTALLATION

- A. Do not proceed with sealant Work until the sample joints specified in Part 1 of this Section have been prepared and accepted by the Architect.
- B. Install sealant in accordance with manufacturer's instructions and ASTM C1193.
- C. Apply sealant per ASTM C919 at gypsum board framed sound walls, side of runners in metal framing and miscellaneous openings and cutouts.
- D. Measure joint dimensions and size materials to achieve required 2:1 width/depth ratios.
- E. Install joint backing to achieve a neck dimension no greater than 1/3 of the joint width.
- F. Install bond breaker where joint backing is not used.
- G. Install sealant free of air pockets, foreign embedded matter, ridges, and sags.
- H. Apply sealant within recommended application temperature ranges. Consult manufacturer when sealant cannot be applied within these temperature ranges.
- I. Tool joints concave unless detailed otherwise.
- 3.04 CLEANING
 - A. Clean adjacent soiled surfaces.
- 3.05 PROTECTION OF FINISHED WORK
 - A. Protect finished installation under provisions of Division 01, General Requirements.
 - B. Protect sealants until cured.

END OF SECTION

SECTION 22 00 00

GENERAL PLUMBING REQUIREMENTS

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

Α. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SCOPE

- Α. Basic plumbing requirements specifically applicable to Division 22 Sections.
- B Work includes but is not necessarily limited to the following:
 - Labor, materials, services, equipment, and appliances required for completion of 1. tasks as indicated on drawing or in specification or as inherently necessary to prepare spaces and systems for new installations as follows: a.
 - Plumbing systems and equipment

1.03 DRAWINGS AND SPECIFICATIONS

- Α. Drawings accompanying these Specifications show intent of Work to be done. Specifications shall identify quality and grade of installation and where equipment and hardware is not particularly specified. Contractor shall provide submittals for all products and install them per manufacturers' recommendations, and in a first class manner.
- Examine Drawings and Specifications for elements in connection with this Work; Β. determine existing and new general construction conditions and be familiar with all limitations caused by such conditions.
- C. Plans are intended to show general arrangement and extent of Work contemplated. Exact location and arrangement of parts shall be determined after the Owner has reviewed equipment, as Work progresses, to conform in best possible manner with surroundings, and as directed by the Owner's Representative.
- D. Contract Documents are in part diagrammatic and intended to show the scope and general arrangement of the Work under this Contract. The Contractor shall follow these drawings in laying out the equipment, piping and ductwork. Drawings are not intended to be scaled for roughing in measurements or to serve as shop drawings. Where job conditions require minor changes or adjustments in the indicated locations or arrangement of the Work, such changes shall be made without change in the Contract amount.
- Ε. Follow dimensions without regard to scale. Where no figures or notations are given, the Plans shall be followed.
- 1.04 UTILITIES

- A. Location and sizes of electrical, mechanical and plumbing service facilities are shown in accordance with data secured from existing record drawings and site observations. Data shown are offered as an estimating guide without guarantee of accuracy. Check and verify all data given, and verify exact location of all utility services pertaining to Work prior to excavation or performing Work.
- 1.05 APPLICABLE REFERENCE STANDARDS, CODES AND REGULATIONS:
 - A. Meet requirements of all state codes having jurisdiction.
 - B. State of California Code of Regulations:
 - 1. Title 8, Industrial Relations
 - 2. Title 19, State Fire Marshal Regulations
 - 3. Current California Building Code (CBC), Title 24, Part 2
 - 4. Current California Electrical Code, Title 24, Part 3
 - 5. Current California Mechanical Code, Title 24, Part 4
 - 6. Current California Plumbing Code, Title 24, Part 5
 - 7. Current California Fire Code, Title 24, Part 9
 - 8. Current California Standards Code, Title 24, Part 12
 - 9. Title 24, Energy Conservation Standards
 - 10. California Green Building Standard Code, Title 24, Part 11
 - C. Additional Referenced Standards:
 - 1. ASME American Society of Mechanical Engineers
 - 2. ASTM American Society for Testing and Materials
 - 3. NEMA National Electrical Manufacturer's Association
 - 4. NFPA National Fire Protection Association Standards
 - 5. PDI Plumbing and Drainage Institute
 - 6. UL Underwriters Laboratories
 - D. Codes and ordinances having jurisdiction over Work are minimum requirements; but, if Contract Documents indicate requirements, which are in excess of those minimum requirements, then requirements of the Contract Documents shall be followed. Should there be any conflicts between Contract Documents or codes or any ordinances having jurisdiction, report these to the Owner's Representative.
 - E. Obtain permits, and request inspections from authority having jurisdiction.
- 1.06 PROJECT AND SITE CONDITIONS
 - A. The arrangement of and connection to equipment shown on the drawings is based upon information available and is not intended to show exact dimensions peculiar to a specific manufacturer. The Drawings are, in part, diagrammatic and some features of the illustrated equipment installations may require revision to meet actual equipment installation requirements. Structural supports, housekeeping pads, piping connections and adjacent equipment may have to be altered to accommodate the equipment provided. No additional payment will be made for such revisions or alterations.
 - B. Examine all Drawings and Specifications to be fully cognizant of all work required under this Division.

- C. Examine site related work and surfaces before starting work of any Section.
- D. Install Work in locations shown on approved Drawings, unless prevented by Project conditions.
- E. Prepare shop drawings showing proposed rearrangement of Work to meet Project conditions, including changes to Work specified in other Sections. Obtain permission from the Owner's Representative before proceeding.
- F. Plumbing Contractor shall be fully responsible to survey all underground utilities prior to installation of any utilities.
- G. Beginning work of any Section constitutes acceptance of conditions.
- H. All connections to site piping shall be done by the plumbing contractor.
- I. All work shall be performed in a clean and workmanlike manner. Care shall be exercised to minimize any inconvenience or disturbance to other areas of the building which are to remain in operation. Isolate work areas by means to keep dust and dirt within the construction area.
- J. All piping into stem walls and footings shall be double half lap wrapped with 1/8" thick "Armaflex" insulation. The contractor shall also provide blocked out areas in stem wall and footing. All piping shall avoid the lower 8" of the footing.
- K. All existing piping damaged during construction shall be repaired with materials to match existing by the contractor.
- 1.07 COOPERATION WITH WORK UNDER OTHER DIVISIONS
 - A. Cooperate with other trades to facilitate general progress of Work. Allow all other trades every reasonable opportunity for installation of their work.
 - B. Work under this Division shall follow general building construction closely. Set pipe sleeves and inserts and verify that openings for chases and pipes are provided.
 - C. Work with other trades in determining exact location of outlets, pipes, and pieces of equipment to avoid interference with lines required to maintain proper installation of Work.
 - D. Make such progress in the Work to not delay work of other trades.
 - E. Coordinate with electrical contractor prior to ordering equipment for available voltages at all equipment locations.
 - F. Mechanical Work shall have precedence over the other in the following sequence:
 - 1. Soil and waste piping
 - 2. Hydronic piping
 - 3. Ductwork
 - 4. Fire sprinkler piping
 - 5. Domestic water piping

1.08 DISCREPANCIES

- A. The Contractor shall check all Drawings furnished him immediately upon their receipt and shall promptly notify the Owner's Representative of any discrepancies. Figures marked on Drawings shall in general be followed in preference to scale measurements. Piping and instrumentation diagrams shall in general govern floor plans and sections. Large-scale drawings shall in general govern small-scale drawings.
- B. Where requirements between Drawings and Specifications conflict, the more restrictive provisions shall apply.
- C. If any part of the Specifications or Drawings appears unclear or contradictory, apply to Owner's Representative for interpretation and decision as early as possible, including during bidding period. Do not proceed with such work without Owner Representatives decision. Beginning work of any Section constitutes acceptance of conditions.

1.09 CHANGES

A. The Contractor shall be responsible to make and obtain approval from the Owner's Representative for all necessary adjustments in piping and equipment layouts as required to accommodate the relocations of equipment and/or devices, which are affected by any approved authorized changes or Product substitutions. All changes shall be clearly indicated on the "Record" drawings.

1.010 SUBMITTALS

- A. Refer to Division 01 for additional requirements.
- B. The manufacturer, contractor or supplier shall include a written statement that the submitted equipment, hardware or accessory complies with the requirement of that particular specification section.
- C. The manufacturer shall resubmit the specification section showing compliance with each respective paragraphs and specified items and features in that particular specification section.
- D. All exceptions shall be clearly identified by referencing respective paragraph and other requirements along with proposed alternative.
- E. Note that prior to acceptance of submittals for review, a submittal schedule shall be submitted to the owner's representative.
- F. Submit all division 22 shop drawings and product data grouped and referenced by the specification technical section numbers in one complete submittal package. Individual or partial submittals are not acceptable and will be returned without review.
- G. Shop Drawings:
 - 1. Provide all shop drawings in latest version of Revit/AutoCAD format and PDF format.
 - 2. Drawings shall be a 30 inches by 42 inches in size with a minimum scale of 1/4inch per foot, except as specified otherwise.

- 3. Include installation details of equipment indicating proposed location, layout and arrangement, accessories, piping, and other items that must be shown to assure a coordinated installation.
- 4. Indicate adequate clearance for operation, maintenance, and replacement of operating equipment devices.
- 5. If equipment is disapproved, revise drawings to show acceptable equipment and resubmit.
- 6. The Contractor shall be responsible for all equipment ordered and/or installed prior to receipt of shop drawings returned from the Owner's Representative bearing the Owner's Representative stamp of "Reviewed". All corrections or modifications to the equipment as noted on the shop drawings shall be performed and equipment removed from the job site at the request of the Owner's Representative without additional compensation.
- H. Whenever more than one manufacturer's product is specified, the first named product is the basis of design used in the Work and the use of alternate-named manufacturer's products or substitutes may require modifications in that design.
- I. Proposed Products List: Include Products as required by the individual section in this Division.
- J. The Contractor shall be responsible for all equipment ordered and/or installed prior to receipt of shop drawings returned from the Owner's Representative bearing the Owner's Representative stamp of "Reviewed". All corrections or modifications to the equipment as noted on the shop drawings shall be performed and equipment removed from the job site at the request of the Owner's Representative without additional compensation.
- K. Manufacturer's Data: For each manufactured item, provide current manufacturer's descriptive literature of cataloged products, certified equipment drawings, diagrams, performance and characteristic curves if applicable, and catalog cuts.
- L. Standard Compliance: When materials or equipment provided by the Contractor must conform to the standards of organizations such as American National Standards Institute (ANSI) or American Water Works Association (AWWA), submit proof of such conformance to the Owner Representative for approval. If an organization uses a label or listing to indicate compliance with a particular standard, the label or listing will be acceptable evidence, unless otherwise specified. In lieu of the label or listing, submit a certificate from an independent testing organization, which is competent to perform acceptance testing and is approved by the Owner Representative. The certificate shall state that the item has been tested in accordance with the specified organization's test methods and that the item conforms to the specified organization's standard.
- M. Certified Test Reports: Before delivery of materials and equipment, certified copies of all test reports specified in individual sections shall be submitted for approval.
- N. Certificates of Compliance or Conformance: Submit manufacturer's certifications as required on products, materials, finish, and equipment indicated in the technical sections. Certifications shall be documents prepared specifically for this Contract. Preprinted certifications and copies of previously submitted documents will not be acceptable. The manufacturer's certifications shall name the appropriate products, equipment, or materials and the publication specified as controlling the quality of that

item. Certification shall not contain statements to imply that the item does not meet requirements specified, such as "as good as"; or "achieve the same end use and results as materials formulated in accordance with the referenced publications"; or "equal or exceed the service and performance of the specified material." Certifications shall simply state that the item conforms to the requirements specified. Certificates shall be printed on the manufacturer's letterhead and shall be signed by the manufacturer's official authorized to sign certificates of compliance or conformance.

1.011 PROJECT RECORD DOCUMENTS

- A. Refer to Division 01 for additional requirements.
 - 1. All changes, deviations and information recorded on the "Project Record Drawings" set during Construction shall be redrafted onto the latest version of AutoCAD or Revit, where applicable.
 - 2. Submit completed shop drawings to the Owner prior to completion in AutoCAD format. Contractor hand marked or drafted redlined "Project Record Drawings" will not be accepted.

1.012 PRODUCT ALTERNATIVES OR SUBSTITUTIONS

A. Refer to General Conditions and Division 01 for additional requirements.

1.013 OPERATING INSTRUCTIONS

A. Furnish approved operating instructions for systems and equipment indicated in the technical sections for use by operation and maintenance personnel.

1.014 MANUFACTURER'S RECOMMENDATIONS

A. Where installation procedures or any part thereof are required to be in accordance with manufacturer's recommendations, furnish printed copies of the recommendations prior to installation. Installation of the item shall not proceed until recommendations are received. Failure to furnish recommendations shall be cause for rejection of the equipment or material.

1.015 <u>DELIVERY AND STORAGE</u>

- A. Refer to Division 01 for additional requirements.
- B. Handle, store, and protect equipment and materials in accordance with the manufacturer's recommendations and with the requirements of NFPA 70B P, Appendix I, titled "Equipment Storage and Maintenance During Construction." Replace damaged or defective items with new items.

1.016 GUARANTEE

- A. Except as may be specified under other sections in the Specifications, guarantee all equipment furnished under the Specifications for a period of one year from date of project acceptance against defective workmanship and material and improper installation. Upon notification of failure, correct deficiency immediately and without cost to the Owner.
- B. Standard warranty of manufacturer shall apply for replacement of parts after expiration of the above period. Manufacturer shall furnish replacement parts to the Owner for their service agency as directed.
- PART 2 PRODUCTS

Not Applicable.

- PART 3 EXECUTION
- 3.01 GENERAL
 - A. Obtain and pay for all permits and inspections, including any independent testing required to verify standard compliance, and deliver certificates for same to the Owner's Representative.
- 3.02 WORK RESPONSIBILITIES
 - A. The drawings indicate diagrammatically the desired locations or arrangement of piping, equipment, etc., and are to be followed as closely as possible. Proper judgment must be exercised in executing the work to secure the best possible installation in the available space and to overcome local difficulties due to space limitations or interference with structural conditions.
 - B. The Contractor is responsible for the correct placing of Work and the proper location and connection of Work in relation to the work of other trades. Advise appropriate trade as to locations of access panels.
 - C. In the event changes in the indicated locations or arrangements are necessary, due to developed conditions in the building construction or rearrangement of furnishings or equipment, such changes shall be made without extra cost, providing the change is ordered before the ductwork, piping, etc. and work directly connected to same is installed and no extra materials are required.
 - D. Where equipment is furnished by others, verify dimensions and the correct locations of this equipment before proceeding with the roughing-in of connections.
 - E. All scaled and figured dimensions are approximate of typical equipment of the class indicated. Before proceeding with any work, carefully check and verify all dimensions, sizes, etc. with the drawings to see that the equipment will fit into the spaces provided without violation of applicable codes.
 - F. Should any changes to the Work indicated on the Drawings or described in the

Specifications be necessary in order to comply with the above requirements, notify the Owner immediately and cease work on all parts of the contract, which are affected until approval for any required modifications to the construction has been obtained from the Owner.

- G. Be responsible for any cooperative work, which must be altered due to lack of proper supervision or failure to make proper provisions in time. Such changes shall be under direction of the Owner and shall be made to his satisfaction. Perform all Work with competent and skilled personnel.
- H. All work, including aesthetic as well as mechanical aspects of the Work, shall be of the highest quality consistent with the best practices of the trade.
- I. Replace or repair, without additional compensation, any work, which, in the opinion of the Owner, does not comply with these requirements.

3.03 PAINTING

- A. Refer to Division 09 Painting for additional requirements.
- B. Factory Applied:
 - 1. Plumbing equipment shall have factory-applied painting systems which shall, as a minimum, meet the requirements of NEMA ICS 6 corrosion-resistance test, except equipment specified to meet requirements of ANSI C37.20 shall have a finish as specified in ANSI C37.20.
 - 2. Refer to individual sections of this Division for more stringent requirements.
- C. Field Applied:
 - 1. Paint all plumbing equipment as required to touch up, to match finish on other equipment in adjacent spaces or to meet safety criteria.
 - 2. Paint all exposed plumbing piping, valves, supports, hangers and appurtenances. Provide minimum 5 mils dry film thickness.
 - 3. Paint shall be a high performance polyurethane enamel coating system.
 - 4. Acceptable primer manufacturers include:
 - a. Ameron Amershield VOC, Tnemec's Series 1075 (1074) Endura-Shield, semi-gloss (gloss) sheen or equal.
 - 5. Acceptable paint manufacturers include:
 - a. Ameron, Tnemec or engineer approved equal.

END OF SECTION

SECTION 22 05 23

GENERAL DUTY VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

- 1.01 RELATED DOCUMENTS
 - A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

- A. Section Includes:1. Bronze gate valves.
- 1.03 DEFINITIONS
 - A. CWP: Cold working pressure.
 - B. EPDM: Ethylene propylene-diene terpolymer rubber.
 - C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.
 - D. NRS: Nonrising stem.
 - E. OS&Y: Outside screw and yoke.
 - F. RS: Rising stem.
- 1.04 ACTION SUBMITTALS
 - A. Product Data: For each type of valve.1. Certification that products comply with NSF 61and NSF 372.
- 1.05 DELIVERY, STORAGE, AND HANDLING
 - A. Prepare valves for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, and soldered ends.
 - 3. Protect threads, flange faces, grooves, and weld ends.
 - 4. Set gate valves closed to prevent rattling.
 - B. Use the following precautions during storage:
 - 1. Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher-than-ambient-dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use operating handles or stems as lifting or rigging points.

PART 2 - PRODUCTS

- 2.01 GENERAL REQUIREMENTS FOR VALVES
 - A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.
 - B. ASME Compliance:
 - 1. ASME B1.20.1 for threads for threaded end valves.
 - 2. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 - 3. ASME B16.18 for solder-joint connections.
 - 4. ASME B31.9 for building services piping valves.
 - C. AWWA Compliance: Comply with AWWA C606 for grooved-end connections.
 - D. NSF Compliance: NSF 61 and NSF 372 for valve materials for potable-water service.
 - E. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.
 - F. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
 - G. RS Valves in Insulated Piping: With 2-inch stem extensions.
 - H. Valve Sizes: Same as upstream piping unless otherwise indicated.
 - I. Valve Bypass and Drain Connections: MSS SP-45.
 - J. Valve Actuator Types:
 - 1. Handlever: For quarter-turn valves smaller than NPS 6.

2.02 BRONZE GATE VALVES

- A. Bronze Gate Valves, RS, Class 125:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Apollo Flow Controls; Conbraco Industries, Inc.
 - b. FNW; Ferguson Enterprises, Inc.
 - c. KITZ Corporation.
 - d. NIBCO INC.
 - 2. Description:
 - a. Standard: MSS SP-80, Type 2.
 - b. CWP Rating: 200 psig.
 - c. Body Material: Bronze with integral seat and screw-in bonnet.
 - d. Ends: Threaded or solder joint.

- e. Stem: Bronze.
- f. Disc: Solid wedge; bronze.
- g. Packing: Asbestos free.
- h. Handwheel: Malleable iron, bronze, or aluminum.

PART 3 - EXECUTION

3.01 EXAMINATION

- A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
- B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
- C. Examine threads on valve and mating pipe for form and cleanliness.
- D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.
- E. Do not attempt to repair defective valves; replace with new valves.

3.02 VALVE INSTALLATION

- A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- B. Locate valves for easy access and provide separate support where necessary.
- C. Install valves in horizontal piping with stem at or above center of pipe.
- D. Install valves in position to allow full stem movement.
- E. Install valve tags. Comply with requirements in Section 220553 "Identification for Plumbing Piping and Equipment" for valve tags and schedules.

3.03 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.04 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

- A. If ball valves with specified CWP ratings are unavailable, the same types of valves with higher CWP ratings may be substituted.
- B. Select valves with the following end connections:

- 1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solderjoint valve-end option or press-end option is indicated in valve schedules below.
- C. Use gate valves for shutoff service only.
- 3.05 DOMESTIC HOT- AND COLD-WATER VALVE SCHEDULE
 - A. Pipe NPS 2 and Smaller:
 - 1. Bronze gate valves, NRS, RS, Class 125 or Class 150 with soldered ends.

END OF SECTION

SECTION 22 05 29

HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

- A. Section Includes:
 - 1. Metal pipe hangers and supports.
 - 2. Trapeze pipe hangers.
 - 3. Metal framing systems.
 - 4. Thermal hanger-shield inserts.
 - 5. Fastener systems.
 - 6. Pipe stands.
 - 7. Pipe-positioning systems.
 - 8. Equipment supports.

section not used, verify

- 1.03 ACTION SUBMITTALS
 - A. Product Data: For each type of product.
 - B. Shop Drawings: Sig and sealed by a qualified professional engineer. Show fabrication and installation rails and include calculations for the following:
 - 1. Trapeze pipe hangers.
 - 2. Metal framing systems.
 - 3. Pipe stands.
 - 4. Equipment supports.
 - C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Detail fabrication and assembly of trapeze hangers.
 - 2. Include design calculations for designing trapeze hangers.

1.04 INFORMATIONAL SUBMITTALS

- A. Welding certificates.
- 1.05 QUALITY ASSURANCE
 - A. Structural-Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M.

B. Pipe Welding Qualifications: Qualify procedures and operators according to 2015 ASME Boiler and Pressure Vessel Code, Section IX.

PART 2 - PRODUCTS

- 2.01 PERFORMANCE REQUIREMENTS
 - A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design trapeze pipe hangers and equipment supports.
 - B. Structural Performance: Hangers and supports for plumbing piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7-16.
 - 1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
 - 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
 - 3. Design seismic-restraint hangers and supports for piping and equipment and obtain approval from authorities having jurisdiction.

7-16

2.02 METAL PIPE HANGERS AND SUPPORTS

- A. Carbon-Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 - 2. Galvanized Metallic Coatings: Pregalvanized, hot-dip galvanized, or electrogalvanized.
 - 3. Nonmetallic Coatings: Plastic coated or epoxy powder coated.
 - 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
 - 5. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel or stainless steel.
- B. Stainless-Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 - 2. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
 - 3. Hanger Rods: Continuous-thread rod, nuts, and washer made of stainless steel.
- C. Copper Pipe and Tube Hangers:
 - 1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factoryfabricated components.
 - 2. Hanger Rods: Continuous-thread rod, nuts, and washer made of copper-coated steel or stainless steel.

2.03 THERMAL HANGER-SHIELD INSERTS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Carpenter & Paterson, Inc.

- 2. ERICO International Corporation.
- 3. Pipe Shields Inc.
- 4. Piping Technology & Products, Inc.
- B. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with 100psig or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength and vapor barrier.
- C. Insulation-Insert Material for Hot Piping: Water-repellent-treated, ASTM C 533, Type I calcium silicate with 100-psig, ASTM C 552, Type II cellular glass with 100-psig or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength.
- D. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
- E. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
- F. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.
- 2.04 FASTENER SYSTEMS
 - A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Hilti, Inc.
 - b. ITW Ramset/Red Head; Illinois Tool Works, Inc.
 - c. MKT Fastening, LLC.
 - d. Simpson Strong-Tie Co., Inc.
 - B. Mechanical-Expansion Anchors: Insert-wedge-type anchors, for use in hardened portland cement concrete, with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. B-line, an Eaton business.
 - b. Empire Tool and Manufacturing Co., Inc.
 - c. Hilti, Inc.
 - d. ITW Ramset/Red Head; Illinois Tool Works, Inc.
 - 2. Indoor Applications: Zinc-coated or stainless steel.
 - 3. Outdoor Applications: Stainless steel.

2.05 PIPE STANDS

A. General Requirements for Pipe Stands: Shop- or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.

- B. Compact Pipe Stand:
 - 1. Description: Single base unit with integral-rod roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.
 - 2. Base: Single, vulcanized rubber, molded polypropylene, or polycarbonate.
 - 3. Hardware: Galvanized steel or polycarbonate.
 - 4. Accessories: Protection pads.
- C. Low-Profile, Single-Base, Single-Pipe Stand:
 - 1. Description: Single base with vertical and horizontal members, and pipe support, for roof installation without membrane protection.
 - 2. Base: Single, vulcanized rubber, molded polypropylene, or polycarbonate.
 - 3. Vertical Members: Two galvanized or stainless-steel, continuous-thread, 1/2-inch rods.
 - 4. Horizontal Member: Adjustable horizontal, galvanized or stainless-steel pipe support channels.
 - 5. Pipe Supports: Strut clamps, Clevis hanger or Swivel hanger.
 - 6. Hardware: Galvanized or Stainless steel.
 - 7. Accessories: Protection pads.
 - 8. Height: 12 inches above roof.
- D. High-Profile, Single-Base, Single-Pipe Stand:
 - 1. Description: Single base, vertical and horizontal members, and pipe support, for roof installation without membrane penetration.
 - 2. Base: Single vulcanized rubber or molded polypropylene.
 - 3. Vertical Members: Two galvanized or stainless-steel, continuous-thread, 1/2-inch rods.
 - 4. Horizontal Member: One adjustable-height, galvanized or stainless-steel, pipesupport slotted channel or plate.
 - 5. Pipe Supports: Clevis hanger or Swivel hanger.
 - 6. Hardware: Galvanized or Stainless steel.
 - 7. Accessories: Protection pads, 1/2-inch, continuous-thread, galvanized-steel rod or continuous-thread, stainless-steel rod.
 - 8. Height: 36 inches above roof.
- E. High-Profile, Multiple-Pipe Stand:
 - 1. Description: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.
 - 2. Bases: Two or more; vulcanized rubber or molded polypropylene.
 - 3. Vertical Members: Two or more, galvanized or stainless-steel channels.
 - 4. Horizontal Members: One or more, adjustable-height, galvanized or stainlesssteel pipe support.
 - 5. Pipe Supports: Strut clamps, Clevis hanger or Swivel hanger.
 - 6. Hardware: Galvanized or Stainless steel.
 - 7. Accessories: Protection pads, 1/2-inch, continuous-thread rod.
 - 8. Height: 36 inches above roof.
- F. Curb-Mounted-Type Pipe Stands: Shop- or field-fabricated pipe supports made from structural-steel shapes, continuous-thread rods, and rollers, for mounting on permanent stationary roof curb.

2.06 PIPE-POSITIONING SYSTEMS

- A. Description: IAPMO PS 42 positioning system composed of metal brackets, clips, and straps for positioning piping in pipe spaces; for plumbing fixtures in commercial applications.
- 2.07 EQUIPMENT SUPPORTS
 - A. Description: Welded, shop- or field-fabricated equipment support made from structuralcarbon-steel shapes.
- 2.08 MATERIALS
 - A. Aluminum: ASTM B 221.
 - B. Carbon Steel: ASTM A 1011/A 1011M.
 - C. Structural Steel: ASTM A 36/A 36M carbon-steel plates, shapes, and bars; black and galvanized.
 - D. Stainless Steel: ASTM A 240/A 240M.
 - E. Grout: ASTM C 1107/C 1107M, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.01 APPLICATION

- A. Strength of Support Assemblies: Where not indicated, select sizes of components, so strength will be adequate to carry present and future static loads within specified load-ing limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.
- 3.02 HANGER AND SUPPORT INSTALLATION

section not used, verify

- A. Metal Pipe-Hanger Installation: Comply with MSS SP-58. Install hangers, supports, clamps, and attachments as required to prop = support piping from building structure.
- B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-58. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size, or install intermediate supports for smaller-diameter pipes as specified for individual pipe hangers.
 - 2. Field fabricate from ASTM A 36/A 36M carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.

- C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.
- D. Thermal Hanger-Shield Installation: Install in pipe hanger or shield for insulated piping.
- E. Fastener System Installation:
 - 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete, after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
 - 2. Install mechanical-expansion anchors in concrete, after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.
- F. Pipe Stand Installation:
 - 1. Pipe Stand Types, except Curb-Mounted Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.
- G. Pipe-Positioning-System Installation: Install support devices to make rigid supply and waste piping connections to each plumbing fixture.
- H. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.
- I. Equipment Support Installation: Fabricate from welded-structural-steel shapes.
- J. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- K. Install lateral bracing with pipe hangers and supports to prevent swaying.
- L. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at checking in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms, and install reinforcing bars through openings at top of inserts.
- M. Load Distribution: Install hangers and supports, so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- N. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.
- 3.03 METAL FABRICATIONS
 - A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.

- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. Finish welds at exposed connections, so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.04 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.05 PAINTING

- A. Touchup: Clean field welds and abraded, shop-painted areas. Paint exposed areas immediately after erecting hangers and supports. Use same materials as those used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.
- B. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded, shop-painted areas on miscellaneous metal are specified in specification division 09.
- C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas, and apply galvanizing-repair paint to comply with ASTM A 780/A 780M.
- 3.06 HANGER AND SUPPORT SCHEDULE
 - A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
 - B. Comply with MSS SP-58 for pipe-hanger selections and applications that are not specified in piping system Sections.
 - C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finishes.
 - D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
 - E. Use carbon-steel pipe hangers and supports, metal trapeze pipe hangers and metal framing systems and attachments for general service applications.

- F. Use stainless-steel pipe hangers and stainless-steel or corrosion-resistant attachments for hostile environment applications.
- G. Use copper-plated pipe hangers and copper or stainless-steel attachments for copper piping and tubing.
- H. Use padded hangers for piping that is subject to scratching.
- I. Use thermal hanger-shield inserts for insulated piping and tubing.
- J. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
 - 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F. pipes NPS 4 to NPS 24, requiring up to 4 inches of insulation.
 - 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.
 - 4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 if little or no insulation is required.
 - 5. Pipe Hangers (MSS Type 5): For suspension of pipes NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.
 - 6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated, stationary pipes NPS 3/4 to NPS 8.
 - 7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
 - 8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
 - 9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
 - 10. Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 8.
 - 11. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 3.
 - 12. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
 - 13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
 - 14. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
 - 15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
 - 16. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.
 - 17. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction occurs.

- Adjustable Roller Hangers (MSS Type 43): For suspension of pipes NPS 2-1/2 to NPS 24, from single rod if horizontal movement caused by expansion and contraction occurs.
- 19. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction occurs but vertical adjustment is unnecessary.
- 20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes NPS 2 to NPS 24 if small horizontal movement caused by expansion and contraction occurs and vertical adjustment is unnecessary.
- 21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes NPS 2 to NPS 30 if vertical and lateral adjustment during installation, in addition to expansion and contraction, is required.
- K. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
 - 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.
- L. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Turnbuckles (MSS Type 13): For adjustment of up to 6 inches for heavy loads.
 - 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
 - 3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11 split pipe rings.
 - 4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
 - 5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.
- M. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel or Malleable-Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 - 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with barjoist construction, to attach to top flange of structural shape.
 - 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
 - 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
 - 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
 - 6. C-Clamps (MSS Type 23): For structural shapes.
 - 7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
 - 8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
 - 9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
 - 10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.

- 11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
- 12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 - a. Light (MSS Type 31): 750 lb.
 - b. Medium (MSS Type 32): 1500 lb.
 - c. Heavy (MSS Type 33): 3000 lb.
- 13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
- 14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
- 15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.
- N. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 - 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 - 3. Thermal Hanger-Shield Inserts: For supporting insulated pipe.
- O. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
 - 2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
 - 3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41 roll hanger with springs.
 - 4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
 - 5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load, and limit variability factor to 25 percent to allow expansion and contraction of piping system from hanger.
 - 6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load, and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.
 - 7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load, and limit variability factor to 25 percent to allow expansion and contraction of piping system from trapeze support.
 - 8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:
 - a. Horizontal (MSS Type 54): Mounted horizontally.
 - b. Vertical (MSS Type 55): Mounted vertically.
 - c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.
- P. Comply with MSS SP-58 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

- Q. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.
- R. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.
- S. Use pipe-positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.

END OF SECTION

SECTION 22 05 53

IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

- 1.01 RELATED DOCUMENTS
 - A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- 1.02 SUMMARY
 - A. Section Includes:
 - 1. Pipe labels.
 - 2. Valve tags.
- 1.03 ACTION SUBMITTALS
 - A. Product Data: For each type of product indicated.
 - B. Valve numbering scheme.
 - C. Valve Schedules: For each piping system to include in maintenance manuals.

PART 2 - PRODUCTS

2.01 PIPE LABELS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Brady Corporation.
 - 2. Craftmark Pipe Markers.
 - 3. Kolbi Pipe Marker Co.
 - 4. Seton Identification Products.
- B. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.
- C. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.
- D. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.
- E. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings; also include pipe size and an arrow indicating flow direction.
- 1. Flow-Direction Arrows: Integral with piping-system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.
- 2. Lettering Size: Size letters according to ASME A13.1 for piping, At least 1/2 inch for viewing distances up to 72 inches and proportionately larger lettering for greater viewing distances.

2.02 VALVE TAGS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Brady Corporation.
 - 2. Craftmark Pipe Markers.
 - 3. Kolbi Pipe Marker Co.
 - 4. Seton Identification Products.
- B. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.
 - 1. Tag Material: Brass, 0.032-inch, stainless steel, 0.025-inch, aluminum, 0.032inch or anodized aluminum, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 - 2. Fasteners: Brass wire-link chain or beaded chain.
- C. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
 - 1. Valve-tag schedule shall be included in operation and maintenance data.

PART 3 - EXECUTION

3.01 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.02 GENERAL INSTALLATION REQUIREMENTS

- A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- B. Coordinate installation of identifying devices with locations of access panels and doors.
- C. Install identifying devices before installing acoustical ceilings and similar concealment.

3.03 PIPE LABEL INSTALLATION

- A. Pipe Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 - 1. Near each valve and control device.
 - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 - 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
 - 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 - 5. Near major equipment items and other points of origination and termination.
 - 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.
 - 7. On piping above removable acoustical ceilings. Omit intermediately spaced labels.
- B. Directional Flow Arrows: Arrows shall be used to indicate direction of flow in pipes, including pipes where flow is allowed in both directions.
- C. Pipe Label Color Schedule:

1.

- Low-Pressure Compressed Air Piping:
 - a. Background: Safety blue.
 - b. Letter Colors: White.
- 2. Domestic Water Piping
 - a. Background: Safety green.
 - b. Letter Colors: White.

3.04 VALVE-TAG INSTALLATION

- A. Install tags on valves and control devices in piping systems, except check valves, valves within factory-fabricated equipment units, shutoff valves, faucets, convenience and lawn-watering hose connections, and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.
- B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:
 - 1. Valve-Tag Size and Shape:
 - a. Domestic Water: 1-1/2 inches or 2 inches, round.
 - b. Low-Pressure Compressed Air: 1-1/2 inches to 2 inches, round.
 - 2. Valve-Tag Colors:
 - a. Domestic Water: Natural.
 - b. Low-Pressure Compressed Air: Natural.
 - 3. Letter Colors:
 - a. Domestic Water: Black.
 - b. Low-Pressure Compressed Air: Black.

END OF SECTION

SECTION 22 11 16

DOMESTIC WATER PIPING AND FITTINGS

PART 1 - GENERAL

- 1.01 RELATED DOCUMENTS
 - A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

- A. Section Includes:
 - 1. Copper tube and fittings.
 - 2. Piping joining materials.
 - 3. Transition fittings.
 - 4. Dielectric fittings.
- 1.03 ACTION SUBMITTALS
 - A. Product Data: For transition fittings and dielectric fittings.
- 1.04 INFORMATIONAL SUBMITTALS
 - A. System purging and disinfecting activities report.
 - B. Field quality-control reports.
- 1.05 FIELD CONDITIONS
 - A. Interruption of Existing Water Service: Do not interrupt water service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary water service according to requirements indicated:
 - 1. Notify Architect, Construction Manager and/or Owner no fewer than two days in advance of proposed interruption of water service.
 - 2. Do not interrupt water service without Architect's, Construction Manager's and/or Owner's written permission.

PART 2 - PRODUCTS

2.01 PIPING MATERIALS

- A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.
- B. Potable-water piping and components shall comply with NSF 14, NSF 61, and NSF 372. Include marking "NSF-pw" on applicable piping.

2.02 COPPER TUBE AND FITTINGS

- A. Hard Copper Tube: ASTM B 88, Type L and ASTM B 88, Type K water tube, drawn temper.
- B. Cast-Copper, Solder-Joint Fittings: ASME B16.18, pressure fittings.
- C. Wrought-Copper, Solder-Joint Fittings: ASME B16.22, wrought-copper pressure fittings.
- D. Bronze Flanges: ASME B16.24, Class 150, with solder-joint ends.
- E. Copper Unions:
 - 1. MSS SP-123.
 - 2. Cast-copper-alloy, hexagonal-stock body.
 - 3. Ball-and-socket, metal-to-metal seating surfaces.
 - 4. Solder-joint or threaded ends.
- F. Copper, Brass, or Bronze Pressure-Seal-Joint Fittings:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Apollo Flow Controls; Conbraco Industries, Inc.
 - b. Mueller Industries, Inc.
 - c. NIBCO INC.
 - 2. Fittings: Cast-brass, cast-bronze or wrought-copper with EPDM O-ring seal in each end. Sizes NPS 2-1/2 and larger with stainless steel grip ring and EPDM O-ring seal.
 - 3. Minimum 200-psig working-pressure rating at 250 deg F.
- G. Appurtenances for Grooved-End Copper Tubing:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Anvil International.
 - b. Shurjoint-Apollo Piping Products USA Inc.
 - c. Victaulic Company.
 - 2. Bronze Fittings for Grooved-End, Copper Tubing: ASTM B 75/B 75M copper tube or ASTM B 584 bronze castings.
 - 3. Mechanical Couplings for Grooved-End Copper Tubing:
 - a. Copper-tube dimensions and design similar to AWWA C606.
 - b. Ferrous housing sections.
 - c. EPDM-rubber gaskets suitable for hot and cold water.
 - d. Bolts and nuts.
 - e. Minimum Pressure Rating: 300 psig.

2.03 PIPING JOINING MATERIALS

- A. Pipe-Flange Gasket Materials:
 - 1. AWWA C110/A21.10, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free unless otherwise indicated.
 - 2. Full-face or ring type unless otherwise indicated.

- B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.
- C. Solder Filler Metals: ASTM B 32, lead-free alloys.
- D. Flux: ASTM B 813, water flushable.
- E. Brazing Filler Metals: AWS A5.8M/A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing unless otherwise indicated.
- F. Plastic, Pipe-Flange Gaskets, Bolts, and Nuts: Type and material recommended by piping system manufacturer unless otherwise indicated.
- 2.04 TRANSITION FITTINGS
 - A. General Requirements:
 - 1. Same size as pipes to be joined.
 - 2. Pressure rating at least equal to pipes to be joined.
 - 3. End connections compatible with pipes to be joined.
 - B. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
 - C. Sleeve-Type Transition Coupling: AWWA C219.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Dresser, Inc.
 - b. Jay R. Smith Mfg. Co.
 - c. JCM Industries, Inc.
 - D. Plastic-to-Metal Transition Fittings:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Charlotte Pipe and Foundry Company.
 - b. Harvel Plastics, Inc.
 - c. Spears Manufacturing Company.
 - 2. Description:
 - a. PP-R one-piece fitting with manufacturer's equivalent dimensions.
 - b. One end with threaded brass insert and one solvent-cement-socket or threaded end.
 - E. Plastic-to-Metal Transition Unions:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Colonial Engineering, Inc.
 - b. NIBCO INC.
 - c. Spears Manufacturing Company.
 - 2. Description:

- a. PP-R union.
- b. Brass or stainless-steel threaded end.
- c. Solvent-cement-joint or threaded plastic end.
- d. Rubber O-ring.
- e. Union nut.

2.05 DIELECTRIC FITTINGS

- A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.
- B. Dielectric Unions:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Central Plastics Company.
 - b. WATTS.
 - c. Wilkins.
 - 2. Standard: ASSE 1079.
 - 3. Pressure Rating: 125 psig minimum at 180 deg F.
 - 4. End Connections: Solder-joint copper alloy and threaded ferrous.
- C. Dielectric Flanges:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Central Plastics Company.
 - b. WATTS.
 - c. Wilkins.
 - 2. Standard: ASSE 1079.
 - 3. Factory-fabricated, bolted, companion-flange assembly.
 - 4. Pressure Rating: 125 psig minimum at 180 deg F.
 - 5. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solderjoint copper alloy and threaded ferrous.
- D. Dielectric-Flange Insulating Kits:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Advance Products & Systems, Inc.
 - b. Calpico, Inc.
 - c. Central Plastics Company.
 - 2. Nonconducting materials for field assembly of companion flanges.
 - 3. Pressure Rating: 150 psig.
 - 4. Gasket: Neoprene or phenolic.
 - 5. Bolt Sleeves: Phenolic or polyethylene.
 - 6. Washers: Phenolic with steel backing washers.
- E. Dielectric Nipples:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Elster Perfection Corporation.
 - b. Grinnell G-Fire by Johnson Controls Company.
 - c. Precision Plumbing Products.
- 2. Standard: IAPMO PS 66.
- 3. Electroplated steel nipple complying with ASTM F 1545.
- 4. Pressure Rating and Temperature: 300 psig at 225 deg F.
- 5. End Connections: Male threaded or grooved.
- 6. Lining: Inert and noncorrosive, propylene.

PART 3 - EXECUTION

- 3.01 PIPING INSTALLATION
 - A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.
 - B. Install copper tubing under building slab according to CDA's "Copper Tube Handbook."
 - C. Install underground copper tube pipe in PE encasement according to ASTM A 674 or AWWA C105/A21.5.
 - D. Install shutoff valve, hose-end drain valve, strainer, pressure gage, and test tee with valve inside the building at each domestic water-service entrance. Comply with requirements for pressure gages in Section 220519 "Meters and Gages for Plumbing Piping" and with requirements for drain valves and strainers in Section 221119 "Domestic Water Piping Specialties."
 - E. Install shutoff valve immediately upstream of each dielectric fitting.
 - F. Install water-pressure-reducing valves downstream from shutoff valves. Comply with requirements for pressure-reducing valves in Section 221119 "Domestic Water Piping Specialties."
 - G. Install domestic water piping level with 0.25 percent slope downward toward drain and plumb.
 - H. Rough-in domestic water piping for water-meter installation according to utility company's requirements.
 - I. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.
 - J. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

- K. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.
- L. Install piping to permit valve servicing.
- M. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than the system pressure rating used in applications below unless otherwise indicated.
- N. Install piping free of sags and bends.
- O. Install fittings for changes in direction and branch connections.
- 3.02 JOINT CONSTRUCTION
 - A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
 - B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.
 - C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.
 - D. Brazed Joints for Copper Tubing: Comply with CDA's "Copper Tube Handbook," "Brazed Joints" chapter.
 - E. Soldered Joints for Copper Tubing: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA's "Copper Tube Handbook."
 - F. Pressure-Sealed Joints for Copper Tubing: Join copper tube and pressure-seal fittings with tools and procedure recommended by pressure-seal-fitting manufacturer. Leave insertion marks on pipe after assembly.
 - G. Joint Construction for Grooved-End Copper Tubing: Make joints according to AWWA C606. Roll groove ends of tubes. Lubricate and install gasket over ends of tubes or tube and fitting. Install coupling housing sections over gasket with keys seated in tubing grooves. Install and tighten housing bolts.
 - H. Joint Construction for Grooved-End Steel Piping: Make joints according to AWWA C606. Roll groove ends of pipe as specified. Lubricate and install gasket over ends of pipes or pipe and fitting. Install coupling housing sections over gasket with keys seated in piping grooves. Install and tighten housing bolts.
 - I. Flanged Joints: Select appropriate asbestos-free, nonmetallic gasket material in size, type, and thickness suitable for domestic water service. Join flanges with gasket and bolts according to ASME B31.9.

- 1. Joint Construction for Solvent-Cemented Plastic Piping: Clean and dry joining surfaces. Join pipe and fittings according to the following: Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements. Apply primer.
- 2. PP-R Piping: Join according to ASTM F 2389.
- J. Joints for Dissimilar-Material Piping: Make joints using adapters compatible with materials of both piping systems.
- 3.03 TRANSITION FITTING INSTALLATION
 - A. Install transition couplings at joints of dissimilar piping.
 - B. Transition Fittings in Aboveground Domestic Water Piping NPS 2 and Smaller: Plasticto-metal transition fittings or unions.
- 3.04 DIELECTRIC FITTING INSTALLATION
 - A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
 - B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric couplings nipples or unions.
- 3.05 INSTALLATION OF HANGERS AND SUPPORTS
 - A. Comply with requirements for hangers, supports, and anchor devices in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."
 - 1. Vertical Piping: MSS Type 8 or 42, clamps.
 - 2. Individual, Straight, Horizontal Piping Runs:
 - a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 - b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 - c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
 - 3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 - 4. Base of Vertical Piping: MSS Type 52, spring hangers.
 - B. Support vertical piping and tubing at base and at each floor.
 - C. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8 inch.
 - D. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 3/4 and Smaller: 60 inches with 3/8-inch rod.
 - 2. NPS 1 and NPS 1-1/4: 72 inches with 3/8-inch rod.
 - 3. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
 - 4. NPS 2-1/2: 108 inches with 1/2-inch rod.
 - 5. NPS 3 to NPS 5: 10 feet with 1/2-inch rod.
 - 6. NPS 6: 10 feet with 5/8-inch rod.
 - 7. NPS 8: 10 feet with 3/4-inch rod.
 - E. Install supports for vertical copper tubing every 10 feet.

- F. Install hangers for steel piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/4 and Smaller: 84 inches with 3/8-inch rod.
 - 2. NPS 1-1/2: 108 inches with 3/8-inch rod.
 - 3. NPS 2: 10 feet with 3/8-inch rod.
 - 4. NPS 2-1/2: 11 feet with 1/2-inch rod.
 - 5. NPS 3 and NPS 3-1/2: 12 feet with 1/2-inch rod.
 - 6. NPS 4 and NPS 5: 12 feet with 5/8-inch rod.
 - 7. NPS 6: 12 feet with 3/4-inch rod.
 - 8. NPS 8 to NPS 12: 12 feet with 7/8-inch rod.
- G. Install supports for vertical steel piping every 15 feet.
- H. Support piping and tubing not listed in this article according to MSS SP-58 and manufacturer's written instructions.
- I. Install hangers for copper tubing and piping, with maximum horizontal spacing and minimum rod diameters, to comply with MSS-58, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.
- J. Install vinyl-coated hangers for PP-R piping, with maximum horizontal spacing and minimum rod diameters, to comply with manufacturer's written instructions, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.
- K. Support horizontal piping within 12 inches of each fitting.
- L. Support vertical runs of copper tubing and piping to comply with MSS-58, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.
- M. Support vertical runs of PP-R piping to comply with manufacturer's written instructions, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.

3.06 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. When installing piping adjacent to equipment and machines, allow space for service and maintenance.
- C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.
- D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:
 - 1. Domestic Water Booster Pumps: Cold-water suction and discharge piping.
 - 2. Water Heaters: Cold-water inlet and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.
 - 3. Plumbing Fixtures: Cold- and hot-water-supply piping in sizes indicated, but not smaller than that required by plumbing code.

4. Equipment: Cold- and hot-water-supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 and larger.

3.07 IDENTIFICATION

- A. Identify system components. Comply with requirements for identification materials and installation in Section 220553 "Identification for Plumbing Piping and Equipment."
- B. Label pressure piping with system operating pressure.

3.08 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Piping Inspections:
 - a. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
 - b. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
 - 1) Roughing-in Inspection: Arrange for inspection of piping before concealing or closing in after roughing in and before setting fixtures.
 - 2) Final Inspection: Arrange for authorities having jurisdiction to observe tests specified in "Piping Tests" Subparagraph below and to ensure compliance with requirements.
 - c. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
 - d. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
 - 2. Piping Tests:
 - a. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
 - b. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
 - c. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 - d. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow it to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
 - e. Repair leaks and defects with new materials, and retest piping or portion thereof until satisfactory results are obtained.
 - f. Prepare reports for tests and for corrective action required.
- B. Domestic water piping will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

3.09 ADJUSTING

- A. Perform the following adjustments before operation:
 - 1. Close drain valves, hydrants, and hose bibbs.
 - 2. Open shutoff valves to fully open position.
 - 3. Open throttling valves to proper setting.
 - 4. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.
 - a. Manually adjust ball-type balancing valves in hot-water-circulation return piping to provide hot-water flow in each branch.
 - b. Adjust calibrated balancing valves to flows indicated.
 - 5. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
 - 6. Remove and clean strainer screens. Close drain valves and replace drain plugs.
 - 7. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and are clean and ready for use.
 - 8. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.10 CLEANING

- A. Clean and disinfect potable domestic water piping as follows:
 - 1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
 - 2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:
 - a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 - b. Fill and isolate system according to either of the following:
 - 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.
 - 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.
 - c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
 - d. Repeat procedures if biological examination shows contamination.
 - e. Submit water samples in sterile bottles to authorities having jurisdiction.
- B. Clean non-potable domestic water piping as follows:
 - 1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
 - 2. Use purging procedures prescribed by authorities having jurisdiction or; if methods are not prescribed, follow procedures described below:
 - a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 - b. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedures if biological examination shows contamination.

- C. Prepare and submit reports of purging and disinfecting activities. Include copies of water-sample approvals from authorities having jurisdiction.
- D. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.
- 3.11 PIPING SCHEDULE
 - A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.
 - B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.
 - C. Fitting Option: Extruded-tee connections and brazed joints may be used on aboveground copper tubing.
 - D. Aboveground domestic water piping, NPS 1 to NPS 4, shall be one of the following:
 - 1. Hard copper tube, ASTM B 88, Type L; cast- or wrought-copper, solder-joint fittings; and brazed or soldered joints.
- 3.12 VALVE SCHEDULE
 - A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:
 - 1. Shutoff Duty: Use ball or gate valves for piping NPS 2 and smaller.

END OF SECTION

SECTION 22 11 19

DOMESTIC WATER PIPING SPECIALTIES

PART 1 - GENERAL

- 1.01 RELATED DOCUMENTS
 - A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

- A. Section Includes:
 - 1. Backflow preventers.
 - 2. Flexible connectors.
- 1.03 ACTION SUBMITTALS
 - A. Product Data: For each type of product.
- 1.04 INFORMATIONAL SUBMITTALS
 - A. Field quality-control reports.
- 1.05 CLOSEOUT SUBMITTALS
 - A. Operation and Maintenance Data: For domestic water piping specialties to include in emergency, operation, and maintenance manuals.
- PART 2 PRODUCTS
- 2.01 GENERAL REQUIREMENTS FOR PIPING SPECIALTIES
 - A. Potable-water piping and components shall comply with NSF 61 and NSF 14. Mark "NSF-pw" on applicable plastic piping components.
 - B. Comply with NSF 372 for low lead.
- 2.02 PERFORMANCE REQUIREMENTS
 - A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig unless otherwise indicated.
- 2.03 BACKFLOW PREVENTERS
 - A. Double-Check, Backflow-Prevention Assemblies:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

- a. WATTS Series 2000B
- b. Apollo Flow Controls; Conbraco Industries, Inc.
- c. Zurn Industries, LLC.
- 2. Standard: ASSE 1015.
- 3. Operation: Continuous-pressure applications unless otherwise indicated.
- 4. Pressure Loss: 5 psig maximum, through middle third of flow range.
- 5. Size: Refer to Plumbing design drawings.
- 6. Design Flow Rate: Refer to Plumbing design drawings.
- 7. Selected Unit Flow Range Limits: Refer to Plumbing design drawings.
- 8. Pressure Loss at Design Flow Rate: Refer to Plumbing design drawings.
- 9. Body: Bronze for NPS 2 and smaller; cast iron or steel with interior lining that complies with AWWA C550 or that is FDA approved or stainless steel for NPS 2-1/2 and larger.
- 10. End Connections: Threaded for NPS 2 and smaller.
- 11. Configuration: Designed for horizontal, straight-through flow.
- 12. Accessories:
 - a. Valves NPS 2 and Smaller: Ball type with threaded ends on inlet and outlet.
- B. Backflow-Preventer Test Kits:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Apollo Flow Controls; Conbraco Industries, Inc.
 - b. FEBCO; A WATTS Brand.
 - c. WATTS.
 - d. Zurn Industries, LLC.
 - 2. Description: Factory calibrated, with gages, fittings, hoses, and carrying case with test-procedure instructions.

2.04 FLEXIBLE CONNECTORS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Flex-Hose Co., Inc.
 - 2. Flexicraft Industries.
 - 3. Flex-Weld, Inc.
 - 4. Metraflex Company (The).
- B. Bronze-Hose Flexible Connectors: Corrugated-bronze tubing with bronze wire-braid covering and ends brazed to inner tubing.
 - 1. Working-Pressure Rating: Minimum 200 psig to 250 psig.
 - 2. End Connections NPS 2 and Smaller: Threaded copper pipe or plain-end copper tube.
 - 3. End Connections NPS 2-1/2 and Larger: Flanged copper alloy.
- C. Stainless-Steel-Hose Flexible Connectors: Corrugated-stainless-steel tubing with stainless-steel wire-braid covering and ends welded to inner tubing.
 - 1. Working-Pressure Rating: Minimum 200 psig to 250 psig.
 - 2. End Connections NPS 2 and Smaller: Threaded steel-pipe nipple.
 - 3. End Connections NPS 2-1/2 and Larger: Flanged steel nipple.

PART 3 - EXECUTION

3.01 INSTALLATION

- A. Backflow Preventers: Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction.
 - 1. Locate backflow preventers in same room as connected equipment or system.
 - 2. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe-to-floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are unacceptable for this application.
 - 3. Do not install bypass piping around backflow preventers.
- 3.02 CONNECTIONS
 - A. Drawings indicate general arrangement of piping, fittings, and specialties.
 - B. When installing piping specialties adjacent to equipment and machines, allow space for service and maintenance.
- 3.03 FIELD QUALITY CONTROL
 - A. Perform the following tests and inspections:
 - 1. Test each pressure vacuum breaker, reduced-pressure-principle backflow preventer, double-check, backflow-prevention assembly and/or double-check, detector-assembly backflow preventer according to authorities having jurisdiction and the device's reference standard.
 - B. Domestic water piping specialties will be considered defective if they do not pass tests and inspections.
 - C. Prepare test and inspection reports.
- 3.04 ADJUSTING
 - A. Set field-adjustable pressure set points of water pressure-reducing valves.
 - B. Set field-adjustable flow set points of balancing valves.
 - C. Set field-adjustable temperature set points of temperature-actuated, water mixing valves.

END OF SECTION

SECTION 23 00 00

GENERAL MECHANICAL REQUIREMENTS

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SCOPE

- A. Basic mechanical requirements specifically applicable to Division 23 Sections.
- B. Work includes but is not necessarily limited to the following:
 - 1. Labor, materials, services, equipment, and appliances required for completion of tasks as indicated on drawing or in specification or as inherently necessary to prepare spaces and systems for new installations as follows:
 - a. Heating, ventilating and air conditioning systems and equipment
 - b. Testing, adjusting and balancing

1.03 DRAWINGS AND SPECIFICATIONS

- A. Drawings accompanying these Specifications show intent of Work to be done. Specifications shall identify quality and grade of installation and where equipment and hardware is not particularly specified, Contractor shall provide submittals for all products and install them per manufacturers' recommendations, and in a workmanlike manner.
- B. Examine Drawings and Specifications for elements in connection with this Work; determine existing and new general construction conditions and be familiar with all limitations caused by such conditions.
- C. Plans are intended to show general arrangement and extent of Work contemplated. Exact location and arrangement of parts shall be determined after the Owner has reviewed equipment, as Work progresses, to conform in best possible manner with surroundings, and as directed by the Owner's Representative.
- D. Contract Documents are in part diagrammatic and intended to show the scope and general arrangement of the Work under this Contract. The Contractor shall follow these drawings in laying out the equipment, piping and ductwork. Drawings are not intended to be scaled for roughing in measurements or to serve as shop drawings. Where job conditions require minor changes or adjustments in the indicated locations or arrangement of the Work, such changes shall be made without change in the Contract amount.
- E. Follow dimensions without regard to scale. Where no figures or notations are given, the Plans shall be followed.

1.04 UTILITIES

A. Location and sizes of electrical, mechanical and plumbing service facilities are shown in accordance with data secured from existing record drawings and site observations. Data shown are offered as an estimating guide without guarantee of accuracy. Check and verify all data given, and verify exact location of all utility services pertaining to Work prior to excavation or performing Work.

1.05 APPLICABLE REFERENCE STANDARDS, CODES AND REGULATIONS

- A. Meet requirements of all state codes having jurisdiction.
- B. State of California Code of Regulations:
 - 1. Title 8, Industrial Relations
 - 2. Title 19, State Fire Marshal Regulations
 - 3. 2019 California Building Code (CBC), Title 24, Part 2 & Part 3
 - 4. 2019 California Electrical Code, Title 24, Part 3
 - 5. 2019 California Mechanical Code, Title 24, Part 4
 - 6. 2019 California Plumbing Code, Title 24, Part 5
 - 7. 2019 California Energy Code, Title 24, Part 6
 - 8. 2019 California Fire Code, Title 24, Part 9
 - 9. 2019 California Green Building Code, Title 24, Part 11
 - 10. 2019 California Referenced Standards Code, Title 24, Part 12
- C. Additional Referenced Standards:
 - 1. AABC Associated Air Balance Council
 - 2. AMCA Air Moving and Conditioning Association
 - 3. AHRI Air-Conditioning, Heating and Refrigeration Institute
 - 4. ASHRAE American Society of Heating, Refrigeration and Air Conditioning Engineers
 - 5. ASME American Society of Mechanical Engineers
 - 6. ASTM American Society for Testing and Materials
 - 7. NEMA National Electrical Manufacturer's Association
 - 8. NFPA National Fire Protection Association Standards
 - 9. PDI Plumbing and Drainage Institute
 - 10. UL Underwriters Laboratories
- D. Codes and ordinances having jurisdiction over Work are minimum requirements; but, if Contract Documents indicate requirements, which are in excess of those minimum requirements, then requirements of the Contract Documents shall be followed. Should there be any conflicts between Contract Documents or codes or any ordinances having jurisdiction, report these to the Owner's Representative.
- E. Obtain permits, and request inspections from authority having jurisdiction.
- 1.06 PROJECT AND SITE CONDITIONS
 - A. The arrangement of and connection to equipment shown on the Drawings is based upon information available and is not intended to show exact dimensions peculiar to a specific manufacturer. The Drawings are, in part, diagrammatic and some features of the illustrated equipment installations may require revision to meet actual equipment

installation requirements. Structural supports, housekeeping pads, piping connections and adjacent equipment may have to be altered to accommodate the equipment provided. No additional payment will be made for such revisions or alterations.

- B. Examine all Drawings and Specifications to be fully cognizant of all work required under this Division.
- C. Examine site related work and surfaces before starting work of any Section.
- D. Install Work in locations shown on approved Drawings, unless prevented by Project conditions.
- E. Prepare drawings showing proposed rearrangement of Work to meet Project conditions, including changes to Work specified in other Sections. Obtain permission from the Owner's Representative before proceeding.
- 1.07 COOPERATION WITH WORK UNDER OTHER DIVISIONS
 - A. Cooperate with other trades to facilitate general progress of Work. Allow all other trades every reasonable opportunity for installation of their work.
 - B. Work under this Division shall follow general building construction closely. Set pipe sleeves and inserts and verify that openings for chases and pipes are provided.
 - C. Work with other trades in determining exact location of outlets, pipes, and pieces of equipment to avoid interference with lines required to maintain proper installation of Work.
 - D. Make such progress in the Work to not delay work of other trades.
 - E. Mechanical Work shall have precedence over the other in the following sequence:
 - 1. Soil and waste piping
 - 2. Hydronic piping
 - 3. Ductwork
 - 4. Domestic water piping
 - 5. Fire sprinkler piping

1.08 DISCREPANCIES

- A. The Contractor shall check all Drawings furnished him immediately upon their receipt and shall promptly notify the Owner's Representative of any discrepancies. Figures marked on Drawings shall in general be followed in preference to scale measurements. Piping and instrumentation diagrams shall in general govern floor plans and sections. Large-scale drawings shall in general govern small-scale drawings.
- B. Where requirements between Drawings and Specifications conflict, the more restrictive provisions shall apply.
- C. If any part of the Specifications or Drawings appears unclear or contradictory, apply to Owner's Representative for interpretation and decision as early as possible, including

during bidding period. Do not proceed with such work without Owner Representatives decision. Beginning work of any Section constitutes acceptance of conditions.

1.09 CHANGES

A. The Contractor shall be responsible to make and obtain approval from the Owner's Representative for all necessary adjustments in piping and equipment layouts as required to accommodate the relocations of equipment and/or devices, which are affected by any approved authorized changes or Product substitutions. All changes shall be clearly indicated on the "Record" drawings.

1.10 SUBMITTALS

- A. Refer to Division 01 for additional requirements.
- B. The manufacturer, contractor or supplier shall include a written statement that the submitted equipment, hardware or accessory complies with the requirement of that particular specification section.
- C. The manufacturer shall resubmit the specification section showing compliance with each respective paragraphs and specified items and features in that particular specification section.
- D. All exceptions shall be clearly identified by referencing respective paragraph and other requirements along with proposed alternative.
- E. Note that prior to acceptance of submittals for review, a submittal schedule shall be submitted to the Owner's Representative.
- F. Submit all Division 23 shop drawings and product data grouped and referenced by the specification technical section number in one complete submittal package.
- G. Shop Drawings:
 - 1. Include installation details of equipment indicating proposed location, layout and arrangement, accessories, piping, and other items that must be shown to assure a coordinated installation.
 - 2. Indicate adequate clearance for operation, maintenance, and replacement of operating equipment devices.
 - 3. If equipment is rejected, revise drawings to show acceptable equipment and resubmit.
 - 4. Whenever more than one (1) manufacturer's product is specified, the first named product is the basis of design used in the Drawings and the use of alternate-named manufacturer's products or substitutes may require modifications to the design.
 - 5. The Contractor shall be responsible for all equipment ordered and/or installed prior to receipt of shop drawings returned from the Owner's Representative bearing the Owner's Representative stamp of "Reviewed". All corrections or modifications to the equipment as noted on the shop drawings shall be performed and equipment removed from the job site at the request of the Owner's Representative without additional compensation.

- 6. Manufacturer's Data: For each manufactured item, provide current manufacturer's descriptive literature of cataloged products, certified equipment drawings, diagrams, performance and characteristic curves if applicable, and catalog cuts.
- 7. Standard Compliance: When materials or equipment provided by the Contractor must conform to the standards of organizations such as American National Standards Institute (ANSI) or UL, submit proof of such conformance to the Owner Representative for approval. If an organization uses a label or listing to indicate compliance with a particular standard, the label or listing will be acceptable evidence, unless otherwise specified. In lieu of the label or listing, submit a certificate from an independent testing organization, which is competent to perform acceptance testing and is approved by the Owner Representative. The certificate shall state that the item has been tested in accordance with the specified organization's test methods and that the item conforms to the specified organization's standard.
- 8. Certified Test Reports: Before delivery of materials and equipment, certified copies of all test reports specified in individual sections shall be submitted for approval.
- 9. Certificates of Compliance or Conformance: Submit manufacturer's certifications as required on products, materials, finish, and equipment indicated in the technical sections. Certifications shall be documents prepared specifically for this Contract. Pre-printed certifications and copies of previously submitted documents will not be The manufacturer's certifications shall name the appropriate acceptable. products, equipment, or materials and the publication specified as controlling the guality of that item. Certification shall not contain statements to imply that the item does not meet requirements specified, such as "as good as"; or "achieve the same end use and results as materials formulated in accordance with the referenced publications"; or "equal or exceed the service and performance of the specified material." Certifications shall simply state that the item conforms to the requirements specified. Certificates shall be printed on the manufacturer's letterhead and shall be signed by the manufacturer's official authorized to sign certificates of compliance or conformance.

1.11 PROJECT RECORD DOCUMENTS

- A. Refer to Division 01 for additional requirements.
 - 1. All changes, deviations and information recorded on the "Project Record Drawings" set during Construction shall be redrafted onto the latest version of AutoCAD or Revit, where applicable.
 - 2. Submit completed shop drawings to the Owner prior to completion in AutoCAD format. Contractor hand marked or drafted redlined "Project Record Drawings" will not be accepted.
 - 3. Submitted shop drawings shall include actual changes and shall not be addressed by referencing an RFI number only.

1.12 PRODUCT ALTERNATIVES OR SUBSTITUTIONS

A. Refer to General Conditions and Division 01 for additional requirements.

1.13 OPERATING INSTRUCTIONS

A. Furnish approved operating instructions for systems and equipment indicated in the technical sections for use by operation and maintenance personnel.

1.14 MANUFACTURER'S RECOMMENDATIONS

- A. Where installation procedures or any part thereof are required to be in accordance with manufacturer's recommendations, furnish printed copies of the recommendations prior to installation. Installation of the item shall not proceed until recommendations are received. Failure to furnish recommendations shall be cause for rejection of the equipment or material.
- 1.15 DELIVERY AND STORAGE
 - A. Refer to Division 01 for additional requirements.
 - B. Handle, store, and protect equipment and materials in accordance with the manufacturer's recommendations and with the requirements of NFPA 70B P, Appendix I, titled "Equipment Storage and Maintenance During Construction." Replace damaged or defective items with new items.
- 1.16 GUARANTEE
 - A. Except as may be specified under other sections in the Specifications, guarantee all equipment furnished under the Specifications for a period of one year from date of project acceptance against defective workmanship and material and improper installation. Upon notification of failure, correct deficiency immediately and without cost to the Owner.
 - B. Standard warranty of manufacturer shall apply for replacement of parts after expiration of the above period. Manufacturer shall furnish replacement parts to the Owner for their service agency as directed.

PART 2 - PRODUCTS

Not Applicable.

PART 3 - EXECUTION

- 3.01 GENERAL
 - A. Obtain and pay for all permits and inspections, including any independent testing required to verify standard compliance, and deliver certificates for same to the Owner's Representative.
- 3.02 WORK RESPONSIBILITIES
 - A. The drawings indicate diagrammatically the desired locations or arrangement of piping, equipment, etc., and are to be followed as closely as possible. Proper judgment must be exercised in executing the work to secure the best possible installation in the

available space and to overcome local difficulties due to space limitations or interference with structural conditions.

- B. The Contractor is responsible for the correct placing of Work and the proper location and connection of Work in relation to the work of other trades. Advise appropriate trade as to locations of access panels.
- C. In the event changes in the indicated locations or arrangements are necessary, due to developed conditions in the building construction or rearrangement of furnishings or equipment, such changes shall be made without extra cost, providing the change is ordered before the ductwork, piping, etc. and work directly connected to same is installed and no extra materials are required.
- D. Where equipment is furnished by others, verify dimensions and the correct locations of this equipment before proceeding with the roughing-in of connections.
- E. All scaled and figured dimensions are approximate of typical equipment of the class indicated. Before proceeding with any work, carefully check and verify all dimensions, sizes, etc. with the drawings to see that the equipment will fit into the spaces provided without violation of applicable codes.
- F. Should any changes to the Work indicated on the Drawings or described in the Specifications be necessary in order to comply with the above requirements, notify the Owner immediately and cease work on all parts of the contract, which are affected until approval for any required modifications to the construction has been obtained from the Owner.
- G. Be responsible for any cooperative work, which must be altered due to lack of proper supervision or failure to make proper provisions in time. Such changes shall be under direction of the Owner and shall be made to his satisfaction. Perform all Work with competent and skilled personnel.
- H. All work, including aesthetic as well as mechanical aspects of the Work, shall be of the highest quality consistent with the best practices of the trade.
- I. Replace or repair, without additional compensation, any Work, which, in the opinion of the Owner, does not comply with these requirements.

3.03 PAINTING

- A. Refer to Division 09 for additional requirements.
- B. Factory Applied:
 - 1. Mechanical equipment shall have factory-applied painting systems, which shall, as a minimum, meet the requirements of NEMA ICS 6 corrosion-resistance test, except equipment specified to meet requirements of ANSI C37.20 shall have a finish as specified in ANSI C37.20.
 - 2. Refer to individual sections of this Division for more stringent requirements.
- C. Field Applied:

- 1. Paint all mechanical equipment as required to touch up, to match finish on other equipment in adjacent spaces or to meet safety criteria.
- 2. Paint all exposed, uninsulated mechanical piping, valves, supports, hangers and appurtenances. Provide minimum 5 mils dry film thickness.
- 3. Paint ductwork flat black that are visible behind air outlets and inlets.
- 4. Paint all exposed and rooftop ductwork, roof mounted mechanical equipment, ductwork supports, hangers and appurtenances.
- 5. Paint shall be a high performance polyurethane enamel coating system.
 - a. Acceptable paint manufacturers include Ameron, Tnemec or engineer approved equal.
 - b. Acceptable primer manufacturers include Ameron Amershield VOC, Tnemec's Series 1075 (1074) Endura-Shield, semi-gloss (gloss) sheen or equal.
 - c. Provide minimum 5 mils dry film thickness.

END OF SECTION

SECTION 23 05 93

TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

- 1.01 RELATED DOCUMENTS
 - A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

- A. Section Includes:
 - 1. Balancing Air Systems:
 - a. Constant-volume air systems
 - b. Variable-air-volume systems
 - 2. Testing, Adjusting, and Balancing Equipment:
 - a. Filtration units
- B. Testing, adjusting, and balancing (TAB) contractor will be responsible to carry out the commissioning requirements.
- 1.03 DEFINITIONS
 - A. AABC: Associated Air Balance Council.
 - B. BAS: Building automation systems.
 - C. NEBB: National Environmental Balancing Bureau.
 - D. TAB: Testing, adjusting, and balancing.
 - E. TAB Specialist: An independent entity meeting qualifications to perform TAB work.
 - F. TDH: Total dynamic head.
- 1.04 PREINSTALLATION MEETINGS
 - A. TAB Conference: Conduct a TAB conference at Project site with the Engineer and Commissioning Agent after approval of the TAB strategies and procedures plan to develop a mutual understanding of the details. Provide a minimum of 14 days' advance notice of scheduled meeting time and location.
 - 1. Minimum Agenda Items:
 - a. The Contract Documents examination report.
 - b. The TAB plan.
 - c. Needs for coordination and cooperation of trades and subcontractors.
 - d. Proposed procedures for documentation and communication flow.

1.05 ACTION SUBMITTALS

- A. TAB Report:
 - 1. Air-Balance Report for Prerequisite IEQ 1: Documentation indicating that work complies with ASHRAE 62.1, Section 7.2.2 "Air Balancing."
 - 2. TAB Report for Prerequisite EA 2: Documentation indicating that work complies with ASHRAE/IESNA 90.1, Section 6.7.2.3 "System Balancing."

1.06 INFORMATIONAL SUBMITTALS

- A. Qualification Data: Submit documentation that the TAB specialist and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article.
- B. Contract Documents Examination Report: Submit the Contract Documents review report as specified in Part 3.
- C. Strategies and Procedures Plan: Submit TAB strategies and step-by-step procedures as specified in "Preparation" Article.
- D. System Readiness Checklists: Submit system readiness checklists as specified in "Preparation" Article.
- E. Examination Report: Submit a summary report of the examination review required in "Examination" Article.
- F. Certified TAB reports.
- G. Sample report forms.
- H. Instrument calibration reports, to include the following:
 - 1. Instrument type and make.
 - 2. Serial number.
 - 3. Application.
 - 4. Dates of use.
 - 5. Dates of calibration.
- 1.07 QUALITY ASSURANCE
 - A. TAB Specialists Qualifications: Engage an <u>independent</u> TAB Contractor certified by AABC or NEBB.
 - 1. TAB Field Supervisor: Employee of the TAB specialist and certified by AABC or NEBB.
 - 2. TAB Technician: Employee of the TAB specialist and certified by AABC or NEBB as a TAB technician.
 - B. Instrumentation Type, Quantity, Accuracy, and Calibration: Comply with requirements in ASHRAE 111, Section 4, "Instrumentation."
 - C. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 7.2.2 "Air Balancing."

- D. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.7.2.3 "System Balancing."
- 1.08 COORDINATION
 - A. Notice: Provide seven days' advance notice for each test. Include scheduled test dates and times.
 - B. Perform TAB after leakage and pressure tests on water distribution systems have been satisfactorily completed.
- 1.09 COMMISSIONING REQUIREMENTS UNDER TAB
 - A. Management:
 - 1. The Commissioning Agent (CA) is hired directly by the Owner.
 - 2. The CA directs and coordinates the commissioning activities.
 - 3. All members (CA, TAB, mechanical contractor and controls contractor) work together to fulfill their contracted responsibilities and meet the objectives of the Contract Documents.
 - 4. All contractors shall include the cost of commissioning in the contract price. The contractors should be prepared to provide commissioning assistance and follow through until all the commissioned systems have been signed off by the commissioning provider and the Owner.
 - 5. In each purchase order or subcontract written, include requirements for submittal data, commissioning documentation, O&M data and training.
 - B. Commissioning requires the participation of Division 23 Testing, Adjusting and Balancing contractor to ensure that all systems are operating in a manner consistent with the Design Intent.
 - 1. Contractor shall be familiar with all parts of Division 1 and Division 23 and the commissioning plan issued by the Commissioning Authority and shall execute all commissioning responsibilities assigned to them in the Contract Documents.
 - C. The Test and Balance contractor is responsible for assisting the commissioning agent throughout the entire commissioning process. The work is not complete until the commissioning agent and the Owner has signed off on the commissioned systems.

1.10 COMMISSIONING RESPONSIBILITIES

- A. Test and Balance (TAB) Contractor: The commissioning responsibilities applicable to TAB contractor are as follows (all references apply to commissioned equipment only):
 - 1. All contractors shall include the cost of commissioning in the contract price. The contractors should be prepared to provide commissioning assistance and follow through until all the commissioned systems have been signed off by the commissioning provider and the Owner.
 - 2. In each purchase order or subcontract written, include requirements for submittal data, commissioning documentation, O&M data and training.
 - 3. General Contractor shall attend a commissioning kickoff meeting and other meetings necessary to facilitate the commissioning process.

- 4. General Contractor shall provide the Commissioning Provider with normal cut sheets and shop drawing submittals of commissioned equipment.
- 5. General Contractor shall provide additional requested documentation, prior to normal O&M manual submittals, to the Commissioning Provider for development of start-up and functional testing procedures.
 - a. Typically this will include detailed manufacturer installation and start-up, operating, troubleshooting and maintenance procedures. In addition, the installation, start-up and checkout materials that are actually shipped inside the equipment and the actual field checkout sheet forms to be used by the factory or field technicians shall be submitted to the Commissioning Provider.
 - b. The Commissioning Provider may request further documentation necessary for the commissioning process.
- 6. General Contractor shall provide a copy of the O&M manuals and submittals of commissioned equipment, through normal channels, to the Commissioning Provider for review.
- 7. Sub-Contractors and design engineers shall assist in clarifying the operation and control of commissioned equipment in areas where the specifications, control drawings or equipment documentation is not sufficient for writing detailed testing procedures.
- 8. General Contractor shall provide limited assistance to the Commissioning Provider in preparing the specific functional performance test procedures. Sub-Contractors shall review test procedures to ensure feasibility, safety and equipment protection and provide necessary written alarm limits to be used during the tests.
- 9. General Contractor shall develop a full start-up and initial checkout plan using manufacturer's start-up procedures and the pre-functional checklists from the Commissioning Provider for all commissioned equipment. Submit to Commissioning Provider for review prior to startup.
- 10. During the startup and initial checkout process, execute the mechanical and electrical-related portions of the pre-functional checklists for all commissioned equipment.
- 11. Perform and clearly document all completed startup and system operational checkout procedures, providing a copy to the Commissioning Provider.
- 12. Address current Engineer of Record punch list items before functional testing. Air and water TAB shall be completed with discrepancies and problems remedied before functional testing of the respective air- or water-related systems.
- 13. Provide skilled technicians to execute starting of equipment and to execute the functional performance tests. Ensure that they are available and present during the agreed upon schedules and for sufficient duration to complete the necessary tests, adjustments and problem-solving.
- 14. Provide skilled technicians to perform functional performance testing under the direction of the Commissioning Provider. Assist the Commissioning Provider in interpreting the monitoring data, as necessary.
- 15. Correct deficiencies (differences between specified and observed performance) as interpreted by the Commissioning Provider, Owner and Engineer of Record and retest the equipment.
- 16. Prepare O&M manuals according to the Contract Documents, including clarifying and updating the original sequences of operation to as-built conditions.

- 17. During construction, maintain as-built red-line drawings for all drawings and final CAD as-builts for contractor-generated coordination drawings. Update after completion of commissioning.
- 18. Provide training of the Owner's operating staff using expert qualified personnel, as specified.
- 19. Coordinate with equipment manufacturers to determine specific requirements to maintain the validity of the warranty.
- 20. Execute any deferred functional performance testing, witnessed by the Commissioning Provider, according to the specifications.
- 21. Correct deficiencies and make necessary adjustments to O&M manuals and asbuilt drawings for applicable issues identified in any seasonal testing.
- B. TAB Contractor. The duties of the TAB contractor, in addition to those listed in (A) are:
 - 1. Six weeks prior to starting TAB, submit to the Owner the qualifications of the site technician for the project, including the name of the contractors and facility managers of recent projects the technician on which was lead. The Owner's Representative will approve the site technician's qualifications for this project.
 - 2. Submit the outline of the TAB plan and approach for each system and component to the Commissioning Provider, Owner's Representative and the controls contractor six weeks prior to starting the TAB. This plan will be developed after the TAB has some familiarity with the control system.
 - 3. The submitted plan will include:
 - a. Certification that the TAB contractor has reviewed the construction documents and the systems with the design engineers and contractors to sufficiently understand the design intent for each system.
 - b. An explanation of the intended use of the building control system. The controls contractor will comment on feasibility of the plan.
 - c. All field checkout sheets and logs to be used that list each piece of equipment to be tested, adjusted and balanced with the data cells to be gathered for each.
 - d. Discussion of what notations and markings will be made on the duct and piping drawings during the process.
 - e. Final test report forms to be used.
 - f. Detailed step-by-step procedures for TAB work for each system.
 - g. List of all air flow, water flow, sound level, system capacity and efficiency measurements to be performed and a description of specific test procedures, parameters, formulas to be used.
 - h. Details of how total flow will be determined (Air: sum of terminal flows via BAS calibrated readings or via hood readings of all terminals, supply (SA) and return air (RA) pitot traverse, SA or RA flow stations. Water: pump curves, circuit setter, flow station, ultrasonic, etc.).
 - i. The identification and types of measurement instruments to be used and their most recent calibration date.
 - j. Specific procedures that will ensure that both air and water side are operating at the lowest possible pressures and provide methods to verify this.
 - k. Proposed selection points for sound measurements and sound measurement methods.
 - I. Details of methods for making any specified coil or other system plant capacity measurements.

- m. Details of any TAB work to be done in phases (by floor, etc.), or of areas to be built out later.
- n. Details regarding specified deferred or seasonal TAB work.
- o. Details of any specified false loading of systems to complete TAB work.
- p. Details of all exhaust fan balancing and capacity verifications.
- q. Plan for hand-written field technician logs of discrepancies, deficient or uncompleted work by others, contract interpretation requests and lists of completed tests (scope and frequency).
- r. Plan for formal progress reports (scope and frequency).
- s. Plan for formal deficiency reports (scope, frequency and distribution).
- 4. A running log of events and issues shall be kept by the TAB field technicians. Submit hand-written reports of discrepancies, deficient or uncompleted work by others, contract interpretation requests and lists of completed tests to the Owner's Representative and Commissioning Provider.
- 5. Communicate in writing to the General Contractor and the controls contractor all setpoint and parameter changes made or problems and discrepancies identified during TAB which affect the control system setup and operation.
- 6. Provide a TAB report within two weeks of completion. A copy will be provided to the Commissioning Provider. The report will contain a full explanation of the methodology, assumptions and the results in a clear format with designations of all uncommon abbreviations and column headings. The report should follow the latest and most rigorous reporting recommendations as required under as specified.
- 7. Provide the Commissioning Provider with any requested data, gathered, but not shown on the draft reports.
- 8. Provide calibrated instruments to assist Commissioning Provider in conducting calibration checks of sensors and flow meters.
- 9. Provide a final TAB report for the Commissioning Provider with details, as in the draft.
- 10. Conduct functional performance tests and checks on the original TAB as dictated by the Commissioning Provider.
- PART 2 PRODUCTS (Not Applicable)
- PART 3 EXECUTION
- 3.01 EXAMINATION
 - A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems designs that may preclude proper TAB of systems and equipment.
 - B. Examine installed systems for balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are applicable for intended purpose and are accessible.
 - C. Examine the approved submittals for HVAC systems and equipment.

- D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems output, and statements of philosophies and assumptions about HVAC system and equipment controls.
- E. Examine ceiling plenums and underfloor air plenums used for supply, return, or relief air to verify that they are properly separated from adjacent areas. Verify that penetrations in plenum walls are sealed and fire-stopped if required.
- F. Examine equipment performance data including fan and pump curves.
 - 1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
 - 2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems - Duct Design." Compare results with the design data and installed conditions.
- G. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.
- H. Examine test reports specified in individual system and equipment Sections.
- I. Examine HVAC equipment and verify that bearings are greased, belts are aligned and tight, filters are clean, and equipment with functioning controls is ready for operation.
- J. Examine heat-transfer coils for correct piping connections and for clean and straight fins.
- K. Examine system pumps to ensure absence of entrained air in the suction piping.
- L. Examine operating safety interlocks and controls on HVAC equipment.
- M. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.02 PREPARATION

- A. Prepare a TAB plan that includes the following:
 - 1. Equipment and systems to be tested.
 - 2. Strategies and step-by-step procedures for balancing the systems.
 - 3. Instrumentation to be used.
 - 4. Sample forms with specific identification for all equipment.
- B. Perform system-readiness checks of HVAC systems and equipment to verify system readiness for TAB work. Include, at a minimum, the following:
 - 1. Airside:
 - a. Verify that leakage and pressure tests on air distribution systems have been satisfactorily completed.

- b. Duct systems are complete with terminals installed.
- c. Volume, smoke, and fire dampers are open and functional.
- d. Clean filters are installed.
- e. Fans are operating, free of vibration, and rotating in correct direction.
- f. Variable-frequency controllers' startup is complete and safeties are verified.
- g. Automatic temperature-control systems are operational.
- h. Ceilings are installed.
- i. Windows and doors are installed.
- j. Suitable access to balancing devices and equipment is provided.

3.03 GENERAL PROCEDURES FOR TESTING AND BALANCING

- A. Perform testing and balancing procedures on each system according to the procedures contained in ASHRAE Standard 111 or SMACNA's "HVAC Systems Testing, Adjusting, and Balancing" and in this Section.
- B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.
 - 1. After testing and balancing, install test ports and duct access doors that comply with requirements in Section 233300 "Air Duct Accessories."
 - Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Section 230713 "Duct Insulation," Section 230716 "HVAC Equipment Insulation," and Section 230719 "HVAC Piping Insulation."
- C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.
- D. Take and report testing and balancing measurements in inch-pound (IP) units.

3.04 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

- A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Cross-check the summation of required outlet volumes with required fan volumes.
- B. Prepare schematic diagrams of systems' "as-built" duct layouts.
- C. For variable-air-volume systems, develop a plan to simulate diversity.
- D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.
- E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.
- F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
- G. Verify that motor starters are equipped with properly sized thermal protection.

- H. Check dampers for proper position to achieve desired airflow path.
- I. Check for airflow blockages.
- J. Check condensate drains for proper connections and functioning.
- K. Check for proper sealing of air-handling-unit components.
- L. Verify that air duct system is sealed as specified in Section 233113 "Metal Ducts."

3.05 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

- A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.
 - 1. Measure total airflow.
 - a. Set outside-air, return-air, and relief-air dampers for proper position that simulates minimum outdoor-air conditions.
 - b. Where duct conditions allow, measure airflow by Pitot-tube traverse. If necessary, perform multiple Pitot-tube traverses to obtain total airflow.
 - c. Where duct conditions are not suitable for Pitot-tube traverse measurements, a coil traverse may be acceptable.
 - d. If a reliable Pitot-tube traverse or coil traverse is not possible, measure airflow at terminals and calculate the total airflow.
 - 2. Measure fan static pressures as follows:
 - a. Measure static pressure directly at the fan outlet or through the flexible connection.
 - b. Measure static pressure directly at the fan inlet or through the flexible connection.
 - c. Measure static pressure across each component that makes up the airhandling system.
 - d. Report artificial loading of filters at the time static pressures are measured.
 - 3. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.
 - 4. Obtain approval from Owner for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in HVAC Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.
 - 5. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload occurs. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.
- B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows.
 - 1. Measure airflow of submain and branch ducts.
 - 2. Adjust submain and branch duct volume dampers for specified airflow.
 - 3. Re-measure each submain and branch duct after all have been adjusted.

- C. Adjust air inlets and outlets for each space to indicated airflows.
 - 1. Set airflow patterns of adjustable outlets for proper distribution without drafts.
 - 2. Measure inlets and outlets airflow.
 - 3. Adjust each inlet and outlet for specified airflow.
 - 4. Re-measure each inlet and outlet after they have been adjusted.
- D. Verify final system conditions.
 - 1. Re-measure and confirm that minimum outdoor, return, and relief airflows are within design. Readjust to design if necessary.
 - 2. Re-measure and confirm that total airflow is within design.
 - 3. Re-measure all final fan operating data, rpms, volts, amps, and static profile.
 - 4. Mark all final settings.
 - 5. Test system in economizer mode. Verify proper operation and adjust if necessary.
 - 6. Measure and record all operating data.
 - 7. Record final fan-performance data.

3.06 PROCEDURES FOR VARIABLE-AIR-VOLUME SYSTEMS

- A. Adjust the variable-air-volume systems as follows:
 - 1. Verify that the system static pressure sensor is located at least two-thirds of the distance down the duct from the fan discharge or as shown on the Drawings.
 - 2. Verify that the system is under static pressure control.
 - 3. Select the terminal unit that is most critical to the supply-fan airflow. Measure inlet static pressure and adjust system static pressure control set point so the entering static pressure for the critical terminal unit is not less than the sum of the terminal-unit manufacturer's recommended minimum inlet static pressure plus the static pressure needed to overcome terminal-unit discharge system losses.
 - 4. Calibrate and balance each terminal unit for maximum and minimum design airflow as follows:
 - a. Adjust controls so that terminal is calling for maximum airflow. Some controllers require starting with minimum airflow. Verify calibration procedure for specific project.
 - b. Measure airflow and adjust calibration factor as required for design maximum airflow. Record calibration factor.
 - c. When maximum airflow is correct, balance the air outlets downstream from terminal units.
 - d. Adjust controls so that terminal is calling for minimum airflow.
 - e. Measure airflow and adjust calibration factor as required for design minimum airflow. Record calibration factor. If no minimum calibration is available, note any deviation from design airflow.
 - f. On constant volume terminals, in critical areas where room pressure is to be maintained, verify that the airflow remains constant over the full range of full cooling to full heating. Note any deviation from design airflow or room pressure.
 - 5. After terminals have been calibrated and balanced, test and adjust system for total airflow. Adjust fans to deliver total design airflows within the maximum allowable fan speed listed by fan manufacturer.
 - a. Set outside-air, return-air, and relief-air dampers for proper position that simulates minimum outdoor-air conditions.

- b. Set terminals for maximum airflow. If system design includes diversity, adjust terminals for maximum and minimum airflow so that connected total matches fan selection and simulates actual load in the building.
- c. Where duct conditions allow, measure airflow by Pitot-tube traverse. If necessary, perform multiple Pitot-tube traverses to obtain total airflow.
- d. Where duct conditions are not suitable for Pitot-tube traverse measurements, a coil traverse may be acceptable.
- e. If a reliable Pitot-tube traverse or coil traverse is not possible, measure airflow at terminals and calculate the total airflow.
- 6. Measure fan static pressures as follows:
 - a. Measure static pressure directly at the fan outlet or through the flexible connection.
 - b. Measure static pressure directly at the fan inlet or through the flexible connection.
 - c. Measure static pressure across each component that makes up the airhandling system.
 - d. Report any artificial loading of filters at the time static pressures are measured.
- 7. Set final return and outside airflow to the fan while operating at maximum return airflow and minimum outdoor airflow.
 - a. Balance the return-air ducts and inlets the same as described for constant-volume air systems.
 - b. Verify that terminal units are meeting design airflow under system maximum flow.
- 8. Re-measure the inlet static pressure at the most critical terminal unit and adjust the system static pressure set point to the most energy-efficient set point to maintain the optimum system static pressure. Record set point and give to controls contractor.
- 9. Verify final system conditions as follows:
 - a. Re-measure and confirm that minimum outdoor, return, and relief airflows are within design. Readjust to match design if necessary.
 - b. Re-measure and confirm that total airflow is within design.
 - c. Re-measure final fan operating data, rpms, volts, amps, and static profile.
 - d. Mark final settings.
 - e. Test system in economizer mode. Verify proper operation and adjust if necessary. Measure and record all operating data.
 - f. Verify tracking between supply and return fans.
 - g. Verify building pressurization control by measuring building pressure at various operating conditions.

3.07 PROCEDURES FOR MOTORS

- A. Motors 1/2 HP and Larger: Test at final balanced conditions and record the following data:
 - 1. Manufacturer's name, model number, and serial number.
 - 2. Motor horsepower rating.
 - 3. Motor rpm.
 - 4. Phase and hertz.
 - 5. Nameplate and measured voltage, each phase.
 - 6. Nameplate and measured amperage, each phase.

- 7. Starter size and thermal-protection-element rating.
- 8. Service factor and frame size.
- B. Motors Driven by Variable-Frequency Controllers: Test manual bypass of controller to prove proper operation.

3.08 CONTROLS VERIFICATION

- A. In conjunction with system balancing, perform the following:
 - 1. Verify temperature control system is operating within the design limitations.
 - 2. Confirm that the sequences of operation are in compliance with Contract Documents.
 - 3. Verify that controllers are calibrated and function as intended.
 - 4. Verify that controller set points are as indicated.
 - 5. Verify the operation of lockout or interlock systems.
 - 6. Verify the operation of valve and damper actuators.
 - 7. Verify that controlled devices are properly installed and connected to correct controller.
 - 8. Verify that controlled devices travel freely and are in position indicated by controller: open, closed, or modulating.
 - 9. Verify location and installation of sensors to ensure that they sense only intended temperature, humidity, or pressure.
- B. Reporting: Include a summary of verifications performed, remaining deficiencies, and variations from indicated conditions.
- 3.09 TOLERANCES
 - A. Set HVAC system's airflow rates and water flow rates within the following tolerances:
 - 1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus 5 percent or minus 0 percent.
 - 2. Air Outlets and Inlets: Plus or minus 10 percent.
 - B. Maintaining pressure relationships as designed shall have priority over the tolerances specified above.

3.10 PROGRESS REPORTING

- A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems balancing devices. Recommend changes and additions to systems balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.
- B. Status Reports: Prepare monthly progress reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors.
3.11 FINAL REPORT

- A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.
 - 1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
 - 2. Include a list of instruments used for procedures, along with proof of calibration.
 - 3. Certify validity and accuracy of field data.
- B. Final Report Contents: In addition to certified field-report data, include the following:
 - 1. Fan curves.
 - 2. Manufacturers' test data.
 - 3. Field test reports prepared by system and equipment installers.
 - 4. Other information relative to equipment performance; do not include Shop Drawings and Product Data.
- C. General Report Data: In addition to form titles and entries, include the following data:
 - 1. Title page.
 - 2. Name and address of the TAB specialist.
 - 3. Project name.
 - 4. Project location.
 - 5. Architect's name and address.
 - 6. Engineer's name and address.
 - 7. Contractor's name and address.
 - 8. Report date.
 - 9. Signature of TAB supervisor who certifies the report.
 - 10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
 - 11. Summary of contents including the following:
 - a. Indicated versus final performance.
 - b. Notable characteristics of systems.
 - c. Description of system operation sequence if it varies from the Contract Documents.
 - 12. Nomenclature sheets for each item of equipment.
 - 13. Data for terminal units, including manufacturer's name, type, size, and fittings.
 - 14. Notes to explain why certain final data in the body of reports vary from indicated values.
 - 15. Test conditions for fans and pump performance forms including the following:
 - a. Settings for outdoor-, return-, and exhaust-air dampers.
 - b. Conditions of filters.
 - c. Cooling coil, wet- and dry-bulb conditions.
 - d. Fan drive settings including settings and percentage of maximum pitch diameter.
 - e. Inlet vane settings for variable-air-volume systems.
 - f. Settings for supply-air, static-pressure controller.
 - g. Other system operating conditions that affect performance.
- D. System Diagrams: Include schematic layouts of air distribution systems. Present each system with single-line diagram and include the following:
 - 1. Quantities of outdoor, supply, return, and exhaust airflows.

Ε.

- 2. Duct, outlet, and inlet sizes.
- 3. Filter Units
- 4. Position of balancing devices.
- Air-Handling-Unit Test Reports: For air-handling filter units, include the following:
 - 1. Unit Data:
 - a. Unit identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and unit size.
 - e. Manufacturer's serial number.
 - f. Unit arrangement and class.
 - g. Discharge arrangement.
 - h. Sheave make, size in inches, and bore.
 - i. Center-to-center dimensions of sheave and amount of adjustments in inches.
 - j. Number, make, and size of belts.
 - k. Number, type, and size of filters.
 - 2. Motor Data:
 - a. Motor make, and frame type and size.
 - b. Horsepower and rpm.
 - c. Volts, phase, and hertz.
 - d. Full-load amperage and service factor.
 - e. Sheave make, size in inches, and bore.
 - f. Center-to-center dimensions of sheave and amount of adjustments in inches.
 - 3. Test Data (Indicated and Actual Values):
 - a. Total airflow rate in cfm.
 - b. Total system static pressure in inches wg.
 - c. Fan rpm.
 - d. Discharge static pressure in inches wg.
 - e. Filter static-pressure differential in inches wg.
 - f. Supply airflow
 - g. Return airflow in cfm.
- F. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:
 - 1. Report Data:
 - a. System and air-handling-unit number.
 - b. Location and zone.
 - c. Traverse air temperature in deg F.
 - d. Duct static pressure in inches wg.
 - e. Duct size in inches.
 - f. Duct area in sq. ft.
 - g. Indicated airflow rate in cfm.

- h. Indicated velocity in fpm.
- i. Actual airflow rate in cfm.
- j. Actual average velocity in fpm.
- k. Barometric pressure in psig.
- G. Instrument Calibration Reports:
 - 1. Report Data:
 - a. Instrument type and make.
 - b. Serial number.
 - c. Application.
 - d. Dates of use.
 - e. Dates of calibration.
- 3.12 VERIFICATION OF TAB REPORT
 - A. The TAB specialist's test and balance engineer shall conduct the inspection in the presence of commissioning authority.
 - B. Commissioning authority shall randomly select measurements, documented in the final report, to be rechecked. Rechecking shall be limited to either 10 percent of the total measurements recorded or the extent of measurements that can be accomplished in a normal 8-hour business day.
 - C. If rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."
 - D. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected.
 - E. If TAB work fails, proceed as follows:
 - 1. TAB specialists shall recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes; resubmit the final report and request a second final inspection.
 - 2. If the second final inspection also fails, Owner may contract the services of another TAB specialist to complete TAB work according to the Contract Documents and deduct the cost of the services from the original TAB specialist's final payment.
 - 3. If the second verification also fails, Owner may contact AABC, NEBB or TABB Headquarters regarding the Performance Guaranty.
 - F. Prepare test and inspection reports.

END OF SECTION

SECTION 23 31 13

METAL DUCTS

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

- A. Section Includes:
 - 1. Single-wall rectangular ducts and fittings.
 - 2. Single-wall round and flat-oval ducts and fittings.
 - 3. Sheet metal materials.
 - 4. Sealant and gaskets.
 - 5. Hangers and supports.
 - 6. Seismic-restraint devices.
- B. Related Sections:
 - 1. Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
 - 2. Section 233300 "Air Duct Accessories" for dampers, sound-control devices, ductmounting access doors and panels, turning vanes, and flexible ducts.

1.03 PERFORMANCE REQUIREMENTS

- A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.
- B. Structural Performance: Duct hangers and supports and seismic restraints shall withstand the effects of gravity and seismic loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards Metal and Flexible" SMACNA's "Seismic Restraint Manual: Guidelines for Mechanical Systems." and ASCE 7 and CBC Chapter 1616A, whichever is more stringent.
 - 1. Seismic Hazard Level A: Seismic force to weight ratio, 0.48.
- C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- 1.04 ACTION SUBMITTALS
 - A. Product Data: For each type of the following products:
 - 1. Sealants and gaskets.
 - 2. Seismic-restraint devices.

- B. Shop Drawings:
 - 1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
 - 2. Factory- and shop-fabricated ducts and fittings.
 - 3. Duct layout indicating sizes, configuration, liner material, and static-pressure classes.
 - 4. Elevation of top of ducts.
 - 5. Dimensions of main duct runs from building grid lines.
 - 6. Fittings.
 - 7. Reinforcement and spacing.
 - 8. Seam and joint construction.
 - 9. Penetrations through fire-rated and other partitions.
 - 10. Equipment installation based on equipment being used on Project.
 - 11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
 - 12. Hangers and supports, including methods for duct and building attachment, seismic restraints, and vibration isolation.
- C. Delegated-Design Submittal:
 - 1. Sheet metal thicknesses.
 - 2. Joint and seam construction and sealing.
 - 3. Reinforcement details and spacing.
 - 4. Materials, fabrication, assembly, and spacing of hangers and supports.
 - 5. Design Calculations: Calculations, including analysis data signed and sealed by the licensed structural engineer responsible for their preparation for selecting hangers and supports and seismic restraints.

1.05 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
 - 2. Suspended ceiling components.
 - 3. Structural members to which duct will be attached.
 - 4. Penetrations of smoke barriers and fire-rated construction.
- B. Field quality-control reports.
- 1.06 QUALITY ASSURANCE
 - A. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and System Start-up."
 - B. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.4.4 "HVAC System Construction and Insulation."
 - C. Exhaust systems shall comply with CMC Chapter 6.

PART 2 - PRODUCTS

2.01 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.
- B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
- C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
- D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards -Metal and Flexible."
- 2.02 SINGLE-WALL ROUND AND FLAT-OVAL DUCTS AND FITTINGS
 - A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.
 - 1. Factory- or shop-fabricated spiral lock seam duct:
 - a. No snap lock
 - b. Factory-fabricated longitudinal seam acceptable for ducts larger than standard factory sizes
 - 2. Manufacturers:
 - a. United Sheet Metal Division, United McGill
 - b. Semco Manufacturing, Inc.
 - c. Or equal
 - B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
 - 1. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.
 - C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements,

materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

- 1. Fabricate round ducts larger than 90 inches in diameter with butt-welded longitudinal seams.
- 2. Fabricate flat-oval ducts larger than 72 inches in width (major dimension) with butt-welded longitudinal seams.
- D. Fittings:
 - 1. Same material and construction as duct in which installed
 - 2. For ductwork exposed to occupant view, do not use fabricated fittings at taps to terminal units and outlets. Instead use saddle tap cut into continuous spiral duct. Intent is for spiral duct to be continuous for aesthetic reasons. Saddle tap flange width shall be 0.5 inches or less.
- E. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.03 SHEET METAL MATERIALS

- A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
- B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. General Applications (except as noted below): G60 Galvanized Coating.
 - 2. Plenum Walls and Blank-Offs Where in Contact with Cooling Coil: G90 Galvanized Coating.
 - 3. Exterior Applications: G90 Galvanized Coating.
 - 4. Finishes for Surfaces Exposed to View: Mill phosphatized.
- C. PVC-Coated, Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G90.
 - 2. Coating Materials: Acceptable to authorities having jurisdiction for use on ducts listed and labeled by an NRTL for compliance with UL 181, Class 1.
- D. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304 or 316, as indicated in the "Duct Schedule" Article; cold rolled, annealed, sheet. Exposed surface finish shall be No. 2B, No. 2D, No. 3, or No. 4 as indicated in the "Duct Schedule" Article.
- E. Factory- or Shop-Applied Antimicrobial Coating:
 - 1. Apply to the surface of sheet metal that will form the interior surface of the duct. An untreated clear coating shall be applied to the exterior surface.
 - 2. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.

- 3. Coating containing the antimicrobial compound shall have a hardness of 2H, minimum, when tested according to ASTM D 3363.
- 4. Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
- 5. Shop-Applied Coating Color: Black.
- 6. Antimicrobial coating on sheet metal is not required for duct containing liner treated with antimicrobial coating.
- F. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
 - 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.
- G. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.04 SEALANT AND GASKETS

- A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
- B. Two-Part Tape Sealing System:
 - 1. Tape: Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.
 - 2. Tape Width: 3 inches.
 - 3. Sealant: Modified styrene acrylic.
 - 4. Water resistant.
 - 5. Mold and mildew resistant.
 - 6. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
 - 7. Service: Indoor and outdoor.
 - 8. Service Temperature: Minus 40 to plus 200 deg F.
 - 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum.
 - 10. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 11. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- C. Water-Based Joint and Seam Sealant:
 - 1. Application Method: Brush on.
 - 2. Solids Content: Minimum 65 percent.
 - 3. Shore A Hardness: Minimum 20.
 - 4. Water resistant.
 - 5. Mold and mildew resistant.

- 6. VOC: Maximum 75 g/L (less water).
- 7. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
- 8. Service: Indoor or outdoor.
- 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.
- D. Flanged Joint Sealant: Comply with ASTM C 920.
 - 1. General: Single-component, acid-curing, silicone, elastomeric.
 - 2. Type: S.
 - 3. Grade: NS.
 - 4. Class: 25.
 - 5. Use: O.
 - 6. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 7. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- E. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.
- F. Round Duct Joint O-Ring Seals:
 - 1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg and shall be rated for 10-inch wg static-pressure class, positive or negative.
 - 2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
 - 3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.
- 2.05 HANGERS AND SUPPORTS
 - A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.
 - B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.
 - C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards -Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."
 - D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.
 - E. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A 492.
 - F. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.
 - G. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.

- H. Trapeze and Riser Supports:
 - 1. Supports for Galvanized-Steel Ducts: Galvanized-steel shapes and plates.
 - 2. Supports for Stainless-Steel Ducts: Stainless-steel shapes and plates.
 - 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

2.06 SEISMIC-RESTRAINT DEVICES

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Hilti Corp.
 - 2. TOLCO; a brand of NIBCO Inc.
 - 3. Unistrut Corporation; Tyco International, Ltd.
- B. General Requirements for Restraint Components: Rated strengths, features, and applications shall be as defined in reports by the Office of Statewide Health Planning and Development for the State of California.
- C. Channel Support System: Shop- or field-fabricated support assembly made of slotted steel channels rated in tension, compression, and torsion forces and with accessories for attachment to braced component at one end and to building structure at the other end. Include matching components and corrosion-resistant coating.
- D. Restraint Cables: ASTM A 603, galvanized-steel cables with end connections made of cadmium-plated steel assemblies with brackets, swivel, and bolts designed for restraining cable service; and with an automatic-locking and clamping device or double-cable clips.
- E. Hanger Rod Stiffener: Reinforcing steel angle clamped to hanger rod.
- F. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

PART 3 - EXECUTION

3.01 DUCT INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.
- B. Install ducts according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible" unless otherwise indicated.
- C. Install round and flat-oval ducts in maximum practical lengths.
- D. Install ducts with fewest possible joints.

- E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.
- F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.
- G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.
- H. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.
- I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.
- J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.
- K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire and smoke dampers where required by NFPA 90A, CBC Chapter 7, and where shown on plans. Comply with requirements in Section 233300 "Air Duct Accessories" for fire and smoke dampers.
- L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials. Comply with SMACNA's "IAQ Guidelines for Occupied Buildings Under Construction," Appendix G, "Duct Cleanliness for New Construction Guidelines."

3.02 INSTALLATION OF EXPOSED DUCTWORK

- A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.
- B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.
- C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.
- D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.
- E. Repair or replace damaged sections and finished work that does not comply with these requirements.
- F. Do Not insulated exposed ducts externally, use internal lining equal to the required R-value.

3.03 DUCT SEALING

- A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards -Metal and Flexible."
- B. Seal ducts to the following seal classes according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible":
 - 1. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 2. Outdoor, Supply-Air Ducts: Seal Class A.
 - 3. Outdoor, Exhaust Ducts: Seal Class B.
 - 4. Outdoor, Return-Air Ducts: Seal Class A.
 - 5. Unconditioned Space, Supply-Air Ducts in Pressure Classes 1-Inch wg and Lower: Seal Class B.
 - 6. Unconditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 1-Inch wg: Seal Class A.
 - 7. Unconditioned Space, Exhaust Ducts: Seal Class B.
 - 8. Unconditioned Space, Return-Air Ducts: Seal Class A.
 - 9. Conditioned Space, Supply-Air Ducts in Pressure Classes 1-Inch wg and Lower: Seal Class B.
 - 10. Conditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 1-Inch wg: Seal Class A.
 - 11. Conditioned Space, Exhaust Ducts: Seal Class A.
 - 12. Conditioned Space, Return-Air Ducts: Seal Class A.

3.04 HANGER AND SUPPORT INSTALLATION

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 5, "Hangers and Supports."
- B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 - 1. Where practical, install concrete inserts before placing concrete.
 - 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 - 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.
 - 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.
 - 5. Do not use powder-actuated concrete fasteners for seismic restraints.
- C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.
- D. Hangers Exposed to View: Threaded rod and angle or channel supports.

- E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum interval of 16 feet.
- F. Install upper attachments to structures. Select and size upper attachments with pullout, tension, and shear capacities appropriate for supported loads and building materials where used.

3.05 SEISMIC-RESTRAINT-DEVICE INSTALLATION

- A. Install ducts with hangers and braces designed to support the duct and to restrain against seismic forces required by applicable building codes. Comply with SMACNA's "Seismic Restraint Manual: Guidelines for Mechanical Systems."
 - 1. Space lateral supports a maximum of 40 feet o.c., and longitudinal supports a maximum of 80 feet o.c.
 - 2. Brace a change of direction longer than 12 feet.
- B. Select seismic-restraint devices with capacities adequate to carry present and future static and seismic loads.
- C. Install cables so they do not bend across edges of adjacent equipment or building structure.
- D. Install cable restraints on ducts that are suspended with vibration isolators.
- E. Install seismic-restraint devices using methods approved by an evaluation service member of the ICC Evaluation Service.
- F. Attachment to Structure: If specific attachment is not indicated, anchor bracing and restraints to structure, to flanges of beams, to upper truss chords of bar joists, or to concrete members.
- G. Drilling for and Setting Anchors:
 - 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcement or embedded items during drilling. Notify the Architect if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 - 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 - 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavyduty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
 - 4. Set anchors to manufacturer's recommended torque, using a torque wrench.
 - 5. Install zinc-coated steel anchors for interior applications and stainless-steel anchors for applications exposed to weather.

3.06 CONNECTIONS

A. Make connections to equipment with flexible connectors complying with Section 233300 "Air Duct Accessories."

- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.
- 3.07 PAINTING
 - A. Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer.
- 3.08 FIELD QUALITY CONTROL
 A. Perform tests an spections.
 - B. Leakage Tests:
 - 1. Comply with SMACNA's "HVAC Air Duct Leakage Test Manual." Submit a test report for each test.
 - 2. Test the following systems:
 - a. Ducts with a Pressure Class Higher Than 3-Inch wg: Test representative duct sections, selected by Engineer from sections installed, totaling no less than 25 percent of total installed duct area for each designated pressure class.
 - 3. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.
 - 4. Test for leaks before applying external insulation.
 - 5. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure.
 - 6. Give seven days advance notice for testing.
 - C. Duct System Cleanliness Tests:
 - 1. Visually inspect duct system to ensure that no visible contaminants are present.
 - D. Contractor shall develop and implement an IAQ Management Plan for the construction and preoccupancy phases of the building as follows:
 - During construction meet or exceed the recommended control measures of the Sheet Metal and Air Conditioning National Contractors Association (SMACNA) IAQ Guidelines for Occupied Buildings Under Construction, and Edition 2007, ANSI/SMACNA 008-2008 (Chapter 3).
 - 2. Protect stored materials on-site and installed absorptive materials from moisture damage.
 - 3. If permanently installed air handlers are used during construction, then filtration media with a minimum efficiency reporting value (MERV) of 8 must be used at each return air grille, as determined by ASHRAE Standard 52.2-2012 (with errata, but without addenda). Replace air filtration media immediately prior to occupancy.
 - E. Duct system will be considered defective if it does not pass tests and inspections.
 - F. Prepare test and inspection reports.

- 3.09 START UP
 - A. Air Balance: Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC."
- 3.010 DUCT SCHEDULE
 - A. Fabricate ducts with galvanized sheet steel except as otherwise indicated.
 - B. Supply Ducts:
 - 1. Ducts Connected to Equipment Not Listed Above:
 - a. Pressure Class: Positive 16-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 4.
 - d. SMACNA Leakage Class for Round and Flat Oval: 2.
 - C. Exhaust Ducts:
 - 1. Ducts Connected to Fans Exhausting Process (ASHRAE 62.1, Class 3 and 4) Air:
 - a. Pressure Class: Negative 16-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 4.
 - d. SMACNA Leakage Class for Round and Flat Oval: 2.
 - D. Intermediate Reinforcement:
 - 1. Galvanized-Steel Ducts: Galvanized steel.
 - 2. Stainless-Steel Ducts: Stainless steel
 - E. Elbow Configuration:
 - Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 - a. Velocity 1000 fpm or Lower:
 - 1) Radius Type RE 1 with minimum 1.0 radius-to-diameter ratio.
 - 2) Mitered Type RE 4 with single-thickness turning vanes.
 - b. Velocity 1000 to 1500 fpm:
 - 1) Radius Type RE 1 with minimum 1.0 radius-to-diameter ratio.
 - 2) Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and single-thickness turning vanes.
 - 3) Mitered Type RE 2 with single-thickness vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
 - c. Velocity 1500 fpm or Higher:
 - 1) Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 - 2) Radius Type RE 3 with minimum 1.5 radius-to-diameter ratio and single-thickness turning vanes.
 - 3) Mitered Type RE 2 with single-thickness vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."

- 2. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 - a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 - b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and singlethickness turning vanes.
 - Mitered Type RE 2 with single-thickness vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
- 3. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-4, "Round Duct Elbows."
 - Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
 - 1) Velocity 1000 fpm or Lower: 1.0 radius-to-diameter ratio and three segments for 90-degree elbow.
 - 2) Velocity 1000 to 1500 fpm: 1.5 radius-to-diameter ratio and four segments for 90-degree elbow.
 - 3) Velocity 1500 fpm or Higher: 1.5 radius-to-diameter ratio and five segments for 90-degree elbow.
 - 4) Radius-to Diameter Ratio: 1.5.
 - b. Round Elbows, 10 Inches and Smaller in Diameter: Stamped or pleated.
 - c. Round Elbows, 12 Inches and Larger in Diameter: Welded.
- F. Branch Configuration:
 - 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-6, "Branch Connection."
 - a. Rectangular Main to Rectangular Branch: 45-degree entry.
 - b. Rectangular Main to Round Branch: Spin in.
 - Taps shall be the more stringent of what is shown on the mechanical drawings and the criteria listed below. Round and Flat Oval: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees." Saddle taps are permitted in existing duct.
 - a. Velocity 900 fpm or Lower: 90-degree tap.
 - b. Velocity 901 to 1500 fpm: Conical tap.
 - c. Velocity 1501 fpm or Higher: 45-degree lateral.

END OF SECTION

SECTION 23 33 00

AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

- A. Section Includes:
 - 1. Backdraft and pressure relief dampers.
 - 2. Manual volume dampers.
 - 3. Flange connectors.
 - 4. Turning vanes.
 - 5. Duct-mounted access doors.
 - 6. Flexible connectors.
 - 7. Duct accessory hardware.
- 1.03 ACTION SUBMITTALS
 - A. Product Data: For each type of product.
 - B. Shop Drawings: For duct accessories. Include plans, elevations, sections, details and attachments to other work.
 - 1. Detail duct accessories fabrication and installation in ducts and other construction. Include dimensions, weights, loads, and required clearances; and method of field assembly into duct systems and other construction. Include the following:
 - a. Special fittings.
 - b. Manual volume damper installations.
 - c. Combination fire- and smoke-damper installations, including sleeves; and duct-mounted access doors and remote damper operators.
 - d. Wiring Diagrams: For power, signal, and control wiring.

1.04 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which ceilingmounted access panels and access doors required for access to duct accessories are shown and coordinated with each other, using input from Installers of the items involved.
- B. Source quality-control reports.

1.05 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.01 BACKDRAFT AND PRESSURE RELIEF DAMPERS

- A. Manufactures shall be Ruskin, Greenheck or equal.
- B. Frame: 8 inches x minimum 0.125 inch 6063-T5 extruded aluminum channel with front flange and galvanized steel braces at mitered corners.
- C. Blades:
 - 1. Style: 2V.
 - 2. Action: Parallel.
 - 3. Orientation: Horizontal.
 - 4. Material: Minimum 0.070 inch 6063-T5 extruded aluminum.
 - 5. Width: Maximum 6 inches.
- D. Bearings: Galvanized Steel Ball Axle Bearings.
- E. Blade Seals: Extruded vinyl, mechanically attached to blade edge.
- F. Linkage: External heavy-duty type with steel clevis arms and plated steel tie bars & pivot pins with nylon pivot bearings.
- G. Axles: Galvanized steel.
- H. Counterbalances: Adjustable externally mounted counterbalance weights mechanically attached to blade enabling damper to operate over wide range of pressures.
- I. Finish: Mill aluminum.
- J. Performance Data:
 - 1. Temperature Rating: Withstand -20° to 180°F.
 - 2. Capacity: Demonstrate capacity of damper to withstand HVAC system operating conditions.
 - a. Closed Position: Maximum differential pressure of 5 inches w.g.
 - b. Open Position: Maximum air velocity of 3,900 feet per minute.
 - 3. Pressure Drop: Maximum 0.3-inch w.g. at 10,000 CFM through 36 inch x 36 inch damper.

2.02 MANUAL VOLUME DAMPERS

- A. Fabricate in accordance with SMACNA Low Pressure Duct Construction Standards, and as indicated.
- B. Fabricate splitter dampers of material same gage as duct to 24 inches size in either direction, and two gages heavier for sizes over 24 inches.
- C. Fabricate splitter dampers of single thickness sheet metal to streamline shape. Secure blade with continuous hinge or rod. Operate with minimum 1/4-inch diameter rod in self aligning, universal joint action flanged bushing with set screw.
- D. Fabricate single blade dampers for duct sizes to 12 x 48 inch.
- E. Fabricate multi-blade damper of opposed blade pattern with maximum blade sizes 12 x 72 inch. Assemble center and edge crimped blades in prime coated or galvanized channel frame with suitable hardware.
- F. Except in round ductwork 12 inches and smaller, provide end bearings. On multiple blade dampers, provide oil-impregnated nylon or sintered bronze bearings.
- G. Provide locking, indicating quadrant regulators on single and multi-blade dampers. Where rod lengths exceed 30 inches provide regulator at both ends.
- H. On insulated ducts mount quadrant regulators on stand-off mounting brackets, bases, or adapters.
- 2.03 FLANGE CONNECTORS
 - A. Manufacturer shall be Ductmate, CL WARD, or equal.
 - B. Description: Roll-formed, factory-fabricated, slide-on transverse flange connectors, gaskets, and components.
 - C. Material: Galvanized steel. 🗗
 - D. Gage and Shape: Match connecting ductwork.
- 2.04 TURNING VANES
 - A. Manufacturer shall be Ductmate, CL WARD, or equal.
 - B. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.
 - C. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards -Metal and Flexible"; Figures 4-3, "Vanes and Vane Runners," and 4-4, "Vane Support in Elbows."
 - D. Vane Construction: Single wall for ducts up to 24 inches wide and double wall for larger dimensions.

2.05 DUCT-MOUNTED ACCESS DOORS

- A. Manufacturers shall be Ventfrabrics, Ductmate, Pottorf Company or equal.
- B. Fabricate in accordance with SMACNA Low Pressure Duct Construction Standards and as indicated.
- C. Review locations prior to fabrication.
- D. Fabricate rigid and close-fitting doors of galvanized steel with sealing gaskets and quick fastening locking devices. For insulated ductwork, install minimum one-inch thick insulation with sheet metal cover.
- E. Access doors smaller than 12 inches square may be secured with sash locks.
- F. Provide two hinges and two sash locks for sizes up to 18 inches square, three hinges and two compression latches with outside and inside handles for sizes up to 24 x 48 inches. Provide an additional hinge for larger sizes.
- G. Access doors with sheet metal screw fasteners are not acceptable.
- 2.06 FLEXIBLE CONNECTORS
 - A. Manufacturer: Ventfrabrics, Duro Dyne or equal.
 - B. Materials: Flame-retardant or noncombustible fabrics.
 - C. Coatings and Adhesives: Comply with UL 181, Class 1.
 - D. Metal-Edged Connectors: Factory fabricated with a fabric strip 3-1/2 inches wide attached to two strips of 2-3/4-inch- wide, 0.028-inch- thick, galvanized sheet steel or 0.032-inch thick aluminum sheets. Provide metal compatible with connected ducts.
 - E. Indoor System, Flexible Connector Fabric: Glass fabric double coated with neoprene.
 - 1. Minimum Weight: 26 oz./sq. yd.
 - 2. Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
 - 3. Service Temperature: Minus 40 to plus 200 deg F
 - F. Outdoor System, Flexible Connector Fabric: Glass fabric double coated with weatherproof, synthetic rubber resistant to UV rays and ozone.
 - 1. Minimum Weight: 24 oz./sq. yd.
 - 2. Tensile Strength: 530 lbf/inch in the warp and 440 lbf/inch in the filling.
 - 3. Service Temperature: Minus 50 to plus 250 deg F
 - G. Thrust Limits: Combination coil spring and elastomeric insert with spring and insert in compression, and with a load stop. Include rod and angle-iron brackets for attaching to fan discharge and duct.
 - 1. Frame: Steel, fabricated for connection to threaded rods and to allow for a maximum of 30 degrees of angular rod misalignment without binding or reducing isolation efficiency.

- 2. Outdoor Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
- 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
- 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
- 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
- 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
- 7. Coil Spring: Factory set and field adjustable for a maximum of 1/4-inch movement at start and stop.

2.07 DUCT ACCESSORY HARDWARE

- A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.
- B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

PART 3 - EXECUTION

- 3.01 INSTALLATION
 - A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for metal ducts.
 - B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.
 - C. Compliance with ASHRAE/IESNA 90.1-2004 includes Section 6.4.3.3.3 "Shutoff Damper Controls," restricts the use of backdraft dampers, and requires control dampers for certain applications. Install backdraft dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated. Install backdraft dampers at the stair pressurization relief connection.
 - D. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.
 - 1. Install steel volume dampers in steel ducts.
 - 2. Install aluminum volume dampers in aluminum ducts.
 - E. Set dampers to fully open position before testing, adjusting, and balancing.
 - F. Install test holes at fan inlets and outlets and elsewhere as indicated.
 - G. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:
 - 1. Downstream from backdraft dampers, and equipment.
 - 2. Control devices requiring inspection.

- 3. Elsewhere as indicated.
- H. Install access doors with swing against duct static pressure.
- I. Access Door Sizes:
 - 1. One-Hand or Inspection Access: 8 by 5 inches
 - 2. Two-Hand Access: 12 by 6 inches
 - 3. Head and Hand Access: 18 by 10 inches
 - 4. Head and Shoulders Access: 21 by 14 inches
 - 5. Body Access: 25 by 14 inches
 - 6. Body plus Ladder Access: 25 by 17 inches
- J. Install flexible connectors to connect ducts to equipment.
- K. For fans developing static pressures of 5-inch wg and more, cover flexible connectors with loaded vinyl sheet held in place with metal straps.
- L. Install duct test holes where required for testing and balancing purposes.
- M. Install thrust limits at centerline of thrust, symmetrical on both sides of equipment. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4-inch movement during start and stop of fans.
- 3.02 FIELD QUALITY CONTROL
 - A. Tests and Inspections:
 - 1. Operate dampers to verify full range of movement.
 - 2. Inspect locations of access doors and verify that purpose of access door can be performed.
 - 3. Inspect turning vanes for proper and secure installation.

END OF SECTION

SECTION 26 01 00

ELECTRICAL GENERAL PROVISIONS

ARTICLE 1 SUMMARY

- 1.1 This Division of the specification outlines the provisions of the contract work to be performed under this Division.
- 1.2 This Section applies to and forms a part of each section of specifications in Division 26 and all work performed under Division 26, 27 and 28.
- 1.3 In addition, work in this Division is governed by the provisions of the bidding requirements, contract forms, general conditions and all sections under general requirements.
- 1.4 These specifications contain statements which may be more definitive or more restrictive than those contained in the General Conditions. Where these statements occur, they shall take precedence over the General Conditions.
- 1.5 Where the words 'provide' or 'provision' are used, it shall be definitely interpreted as 'furnishing and installing complete in operating condition'. Where the words 'as indicated' or 'as shown' are used, it shall mean as shown on contract drawings.
- 1.6 Where items are specified in the singular, this Division shall provide the quantity as shown on drawings plus any spares or extras mentioned on drawings or specifications. All specified and supplied equipment shall be new.
- ARTICLE 2 CONTRACTOR QUALIFICATIONS
 - 2.1 The Contractor shall have a current California C-10 Electrical Contractor's license and all individuals working on this project shall have passed the Department of Industrial Relations Division of apprenticeship Standards "Electrician Certification Program."
- ARTICLE 3 CODES, PERMITS AND FEES
 - 3.1 Comply with all applicable laws, ordinances, rules, regulations, codes, or rulings of governmental units having jurisdiction as well as standards of NFPA and serving utility requirements.
 - 3.2 Obtain permits, fees, inspections, meter and the like, associated with work in each section of this Division.
 - 3.3 Installation procedures, methods and conditions shall comply with the latest requirements of the Federal Occupational Safety and Health Act (OSHA).

EXAMINATION OF PREMISES

3.4 Examine the construction drawings and premises prior to bidding. No allowances will be made for not being knowledgeable of existing conditions.

ARTICLE 4 STANDARDS

- 4.1 The following standard publications of the latest editions enforced, and supplements thereto shall form a part of these specifications. All electrical work must, as a minimum, be in accordance with these standards.
 - 4.1.1 2019 California Electrical Code (CEC), Part 3 Title 24 CCR.
 - 4.1.2 National Fire Protection Association.
 - 4.1.3 Underwriters' Laboratories, Inc. (UL).

ARTICLE 5 DEFINITIONS

- 5.1 Concealed: Hidden from sight, as in trenches, chases, hollow construction, or above furred spaces, hung ceilings acoustical or plastic type, or exposed to view only in tunnels, attics, shafts, crawl spaces, unfinished spaces, or other areas solely for maintenance and repair.
- 5.2 Exposed, Non-Concealed, Unfinished Space: A room or space that is ordinarily accessible only to building maintenance personnel, a room noted on the 'finish schedule' with exposed and unpainted construction for walls, floors, or ceilings or specifically mentioned as 'unfinished'.
- 5.3 Finish Space: Any space ordinarily visible, including exterior areas.
- ARTICLE 6 WORK AND MATERIALS
 - 6.1 Unless otherwise specified, all materials must be new and of the best quality. Materials previously incorporated into other projects, salvaged, or refurbished are not considered new. Perform all labor in a thorough and workmanlike manner.
 - 6.2 All materials provided under the contract must bear the UL label where normally available. Note that this requirement may be repeated under equipment specifications. In general, such devices as will void the label should be provided in separate enclosures and wired to the labeled unit in proper manner.

ARTICLE 7 SHOP DRAWINGS AND SUBMITTALS

- 7.1 Submit shop drawings and all data in accordance with Division 1 of these specifications and as noted below for all equipment provided under this Division.
- 7.2 Shop drawings submittals demonstrate to the Architect that the Contractor understands the design concept. The Contractor demonstrates their understanding by indicating which equipment and material they intend to furnish and install and by detailing the fabrication and installation methods of material and equipment he intends to use. If deviations, discrepancies, or conflicts

between submittals and specifications are discovered either prior to or after submittals are processed, notify the Architect immediately.

- 7.3 Manufacturer's data and dimension sheets shall be submitted giving all pertinent physical and engineering data including weights, cross sections and maintenance instructions. Standard items of equipment such as receptacles, switches, plates, etc., which are cataloged items, shall be listed by manufacturer.
- 7.4 Index all submittals and reference them to these specifications. All submittal items shall be assembled and submitted, one for each specification section. (Multiple specification sections may be grouped together in one common submittal binder, as long as each individual section is clearly identified.) Partial or incomplete submittal sections will not be reviewed.

ARTICLE 8 EQUIPMENT PURCHASES

- 8.1 Arrange for purchase and delivery of all materials and equipment within 20 days after approval of submittals. All materials and equipment must be ordered in ample quantities for delivery at the proper time. If items are not on the project in time to expedite completion, the Owner may purchase said equipment and materials and deduct the cost from the contract sum.
- 8.2 Provide all materials of similar class or service by one manufacturer.

ARTICLE 9 COOPERATIVE WORK

- 9.1 Correct without charge any work requiring alteration due to lack of proper supervision or failure to make proper provision in time. Correct without charge any damage to adjacent work caused by the alteration.
- 9.2 Cooperative work includes: General supervision and responsibility for proper location and size of work related to this Division, but provided under the other sections of these specifications, and installation of sleeves, inserts, and anchor bolts for work under each section in this Division.

ARTICLE 10 VERIFICATION OF DIMENSIONS

- 10.1 Scaled and figured dimensions are approximate only. Before proceeding with work, carefully check and verify dimensions, etc., and be responsible for properly fitting equipment and materials together and to the structure in spaces provided.
- 10.2 Drawings are essentially diagrammatic, and many offsets, bends, pull boxes, special fittings, and exact locations are not indicated. Carefully study drawings and premises in order to determine best methods, exact location, routes, building obstructions, etc. and install apparatus and equipment in manner and locations to avoid obstructions, preserve headroom, keep openings and passageways clear, and maintain proper clearances.

ARTICLE 11 CLOSING-IN OF UNINSPECTED WORK

11.1 Cover no work until inspected, tested, and approved by the Architect. Where work is covered before inspection and test, uncover it and when inspected, tested, and approved, restore all work to original proper condition at no additional cost to Owner.

ARTICLE 12 IDENTIFICATION OF EQUIPMENT

- 12.1 All electrical equipment shall be labeled, tagged, stamped, or otherwise identified in accordance with the following schedules:
 - 12.1.1 General:
 - 12.1.1.1 In general, the installed laminated nameplates as hereinafter called for shall also clearly indicate its use, areas served, circuit identification, voltage and any other useful data.
 - 12.1.1.2 All auxiliary systems, including communications, shall be labeled to indicate function.
 - 12.1.2 Lighting and Local Panelboards:
 - 12.1.2.1 Panel identification shall be with white and black micarta nameplates. Letters shall be no less than 3/8" high.
 - 12.1.2.2 Circuit directory shall be two column typewritten card set under glass or glass equivalent. Each circuit shall be identified by the room number and/or number of unit and other pertinent data as required.
 - 12.1.3 Distribution Switchboards and Feeders Sections:
 - 12.1.3.1 Identification shall be with 1" x 4" laminated white micarta nameplates with black lettering on each major component, each with name and/or number of unit and other pertinent data as required. Letters shall be no less than 3/8" high.
 - 12.1.3.2 Circuit breakers and switches shall be identified by number and name with 3/8" x 1-1/2" laminated micarta nameplates with 3/16" high letters mounted adjacent to or on circuit breaker or switch.
 - 12.1.4 Disconnect Switches, Motor Starters and Transformers:
 - 12.1.4.1 Identification shall be with white micarta laminated labels and 3/8" high black lettering.
 - 12.1.5 All communication system terminal boxes including T.V., telephone/intercom, security, fire alarm, clock, and computer networking shall be provided with white micarta laminated labels and 3/8" high black lettering.

ARTICLE 13 CONSTRUCTION FACILITIES

- 13.1 Furnish and maintain from the beginning to the completion all lawful and necessary guards, railings, fences, canopies, lights, warning signs, etc. Take all necessary precautions required by City, State Laws, and OSHA to avoid injury or damage to any persons and property.
- 13.2 Temporary power and lighting for construction purposes shall be provided under this Section. All work shall be in accordance with Division 1 of these specifications.

ARTICLE 14 GUARANTEE

- 14.1 Guarantee all material, equipment and workmanship for all sections under this Division in writing to be free from defect of material and workmanship for one year from date of final acceptance, as outlined in the general conditions. Replace without charge any material or equipment proven defective during this period. The guarantee shall include performance of equipment under all site conditions, conditions of load, installing any additional items of control and/or protective devices, as required.
- ARTICLE 15 PATENTS
 - 15.1 Refer to the General Conditions for Contractor's responsibilities regarding patents.
- ARTICLE 16 EQUIPMENT ROUGH-IN
 - 16.1 Rough-in all equipment, fixtures, etc. as designed on the drawings and as specified herein. The drawings indicate only the approximate location of roughins. Mounting heights of all switches, receptacles, wall mounted fixtures and such equipment must be coordinated with the Architectural Designs. The Contractor shall obtain all rough-in information before progressing with any work for rough-in connections. Minor changes in the contract drawings shall be anticipated and provided for under this Division of the specifications to comply with rough-in requirements.

ARTICLE 17 INSERTS, ANCHORS, AND MOUNTING SLEEVES

- 17.1 Inserts and anchors must be:
 - 17.1.1 Furnished and installed for support of work under this Division.
 - 17.1.2 Mounting of equipment that is of such size as to be free standing and that equipment which cannot conveniently be located on walls, such as motor starters, etc., shall be rigidly supported on a framework of galvanized steel angle of Unistrut or B-line systems with all unfinished edges painted.

ARTICLE 18 SEISMIC ANCHORING

18.1 All switchgear and other free-standing electrical equipment or enclosures shall be anchored to the floor and braced at the top of the equipment to the structure. The Contractor shall submit drawings signed by the Contractors registered structural Engineer indicating method of compliance prior installation.

ARTICLE 19 RUST PROOFING

- 19.1 Rust proofing mu e applied to all ferrous metals and shall be in accordance of these specifications and as noted below.
 - 19.1.1 Hot-dipped galvanized shall be applied and after forming of angle-iron, bolts, anchors, etc.
 - 19.1.2 Hot-dipped galvanized coating shall be applied after fabrication for junction boxes and pull boxes cast in concrete.

ARTICLE 20 GENERAL WIRING

- 20.1 Where located adjacent in walls, outlet boxes shall not be placed back to back, nor shall extension rings be used in place of double boxes, all to limit sound transmission between rooms. Provide short horizontal nipple between adjacent outlet boxes, which shall have depth sufficient to maintain wall coverage in rear by masonry wall.
- 20.2 In those instances where outlet boxes, recessed terminal boxes, or recessed equipment enclosures are installed in a fire rated assembly, provide "Flamesafe FSD 1077" fire stopping pads or approved equal, over the outlet or box.
- 20.3 Complete rough-in requirements of all equipment to be wired under the contract are not indicated. Coordinate with respective trades furnishing equipment or with the Architect as the case may be for complete and accurate requirements to result in a neat, workmanlike installation.

ARTICLE 21 SEPARATE CONDUIT SYSTEMS

- 21.1 Each electrical and signal system shall be contained in a separate conduit system as shown on the drawings and as specified herein. This includes each power system, each lighting system, each signal system of whatever nature, telephone, standby system, sound system, control system, fire alarm system, etc.
- 21.2 Further, each item of building equipment must have its own run of power wiring. Control wiring may be included in properly sized conduit for equipment feeders of #6 AWG and smaller, having separate conduit for larger sizes.

ARTICLE 22 CLEANUP

22.1 In addition to cleanup specified under other sections, thoroughly clean all parts of the equipment. Where exposed parts are to be painted, thoroughly clean off any

spattered construction materials and remove all oil and grease spots. Wipe the surface carefully and scrape out all cracks and corners.

- 22.2 Use steel brushes on exposed metal work to carefully remove rust, etc., and leave smooth and clean.
- 22.3 During the progress of the work, keep the premises clean and free of debris.

ARTICLE 23 PAINTING

- 23.1 Paint all unfinished metal as required in accordance with Division 1 of these specifications. (Galvanized and factory painted equipment shall be considered as having a sub-base finish.)
- ARTICLE 24 PROJECT CLOSEOUT
 - 24.1 Prior to completion of project, compile a complete equipment maintenance manual for all equipment supplied under sections of this Division, in accordance with Division 1 of these specifications and as described below.
 - 24.2 Equipment Lists and Maintenance Manuals:
 - 24.2.1 Prior to completion of job, Contractor shall compile a complete equipment list and maintenance manuals. The equipment list shall include the following items for every piece of material equipment supplied under this Section of the specifications:
 - 24.2.1.1 Name, model, and manufacturer.
 - 24.2.1.2 Complete parts drawings and lists.
 - 24.2.1.3 Local supply for parts and replacement and telephone number.
 - 24.2.1.4 All tags, inspection slips, instruction packages, etc., removed from equipment as shipped from the factory, properly identified as to the piece of equipment it was taken from.
 - 24.3 Maintenance manuals shall be furnished for each applicable section of the specifications and shall be suitably bound with hard covers and shall include all available manufacturers' operating and maintenance instructions, together with "as-built" drawings to properly operate and maintain the equipment. The equipment lists and maintenance manuals shall be submitted in duplicate to the Architect for approval not less than 10 days prior to the completion of the job. The maintenance manuals shall also include the name, address, and phone numbers of all subcontractors involved in any of the work specified herein. Four copies of the maintenance manuals bound in single volumes shall be provided.

ARTICLE 25 RECORD DRAWINGS

25.1 The Division 26 Contractor shall maintain record drawings as specified in accordance with Division 1 of these specifications, and as noted below.

- 25.2 Drawings shall show locations of all concealed underground conduit runs, giving the number and size of conduit and wires. Underground ducts shall be shown with cross section elevations and shall be dimensioned in relation to permanent structures to indicate their exact location. Drawing changes shall not be identified only with referencing CORs and RFIs, the drawings shall reflect all of the actual additions or changes made. All as-built drawing information shall be prepared by the contractor in AutoCAD, updating the contract computer files as needed to reflect actual installed conditions for all site plans, lighting, power, communication, networking, audio visual, security or fire alarms systems included in the scope of work for this project.
- 25.3 One set of these record drawings shall be delivered to the Architect. The engineer will review documents for completeness and will not be responsible for editing contractor computer files.
- ARTICLE 26 CHANGES AND EXTRA WORK
 - 26.1 When **changes** in work are requested, the Division 26 Contractor shall provide unit prices for the work involved in accordance with Division 1 of these specifications, and the following:
 - 26.1.1 The material Costs shall **not exceed** the latest edition of the "Trade Service" end column "C" price list. The materials prices may be higher only where the Contractor can produce invoices to substantiate higher material costs. The Contractor shall submit a print out copy of the trade service sheets with the change order to substantiate these values.
 - 26.1.2 The labor Costs shall <u>not exceed</u> the latest edition of the "NECA Manual of Labor Units" <u>normal column</u>.
 - 26.2 When **credits** in work are requested, the Division 26 Contractor shall provide unit prices for the work involved in accordance with Division 1 of these specifications, and the following:
 - 26.2.1 The Material Costs shall **not be less than 80% of** the latest edition of the "Trade Service" end column price list. The materials prices may be lower only where the Contractor can produce invoices to substantiate lower material costs. Restocking fees may also be included in this amount where applicable.
 - 26.2.2 The Labor Costs shall <u>not be less than 80% of</u> the latest edition of the "NECA Manual of Labor Units" <u>normal column</u>.
 - 26.3 Conduit pricing for conduits of all types sized 3" or smaller.

When changes in the scope of work require the Contractor to estimate conduit Installations, they shall **NOT include labor values (only material cost may be included)** for any of the below items. The labor values for conduit installation represented in the NECA manual are inflated to a point where additional labor for the below items can not be justified.

- 26.3.1 Couplings.
- 26.3.2 Set Screw or Compression Fittings, locknuts, Bushings and washers.
- 26.3.3 Conduit straps and associated screws or nails.
- 26.3.4 LB fittings or other specialty fittings or specialty mounting hardware may be included where needed.
- 26.4 Wire pricing for all types and sizes.

When changes in the scope of work require the Contractor to estimate wire installations, they shall **NOT include labor values (only material cost may be included)** for any of the below items. The labor values for wire installation represented in the NECA manual are inflated to a point where additional labor for the below items can not be justified.

26.4.1 Locknuts, Bushings, tape, wire markers.

26.5 When changes in the scope of work require other equipment installations such as lighting fixtures, panelboards, switchboards, wiring devices, communications equipment etc. the Contractor shall **NOT include labor values (only material cost may be included)** for any of the below items. The labor values for these equipment items represented in the NECA manual are inflated to a point where additional labor for the below items can not be justified.

26.5.1 Associated screws, nails, bolts, anchors or supports.

26.5.2 Locknuts, washers, tape.

26.6 The total labor hours for extra work will be required to be calculated as follows:

26.6.1 Change orders with 1 to 30 total labor hours

General Laborer	10%	of total labor hours
Journeyman	10%	of total labor hours
Foreman	80%	of total labor hours

26.6.2 Change orders with 31 to 100 total labor hours

General Laborer	20%	of total labor hours
Journeyman	40%	of total labor hours
Foreman	40%	of total labor hours

26.6.3 Change orders with over 100 total labor hours

General Laborer	30%	of total labor hours
Journeyman	50%	of total labor hours
Foreman	20%	of total labor hours

- 26.7 When change orders are issued which allow the work to be completed in the normal sequence of construction, the labor rates shall be based on the most current "Prevailing Wage" straight time total hourly rate. When change orders require the Contractor to work out of sequence the "Prevailing Wage"– daily overtime hourly rate shall apply. Special condition situations shall be reviewed on an individual basis for alternate hourly rate schedules.
- 26.8 Costs <u>will not</u> be permitted for additional supervision on site or office time for processing any change order other than the 10% overhead allowance as described in Division 1. Cost for special equipment required to install items for an individual change order are permitted and must be individually identified. Lump Sum cost for small tools or any other cost not specifically required for the change order are <u>not</u> permitted.
- 26.9 Contractor estimates shall be formatted to clearly identify each of the following:
 - 26.9.1 Line item description of each type of material or labor item.
 - 26.9.2 Description of quantity for each item.
 - 26.9.3 Description of (material cost per / quantity).
 - 26.9.4 Description of (labor cost per / quantity).
 - 26.9.5 Description of total labor hour breakdown per Foreman, Journeyman or General Laborer as described above.

ARTICLE 27 ELECTRONIC FILES

- 27.1 The Contractor shall make a <u>written</u> request directly to Johnson Consulting Engineers for electronic drawing files. As a part of the written request, please include the following information:
 - 27.1.1 Clearly indicate each drawing sheet needed (i.e., E1.1, E2.1, etc.).
 - 27.1.2 Identify the name, phone number, mailing address and e-mail address of the person to receive the files.
 - 27.1.3 Provide written confirmation and agreement with the requirements described for payment of computer files, as described below.
- 27.2 Detail or riser diagram sheets, or any other drawings other than floor plans or site plans, *will not be made available to the Contractor*.
- 27.3 Files will only be provided in the AutoCAD format in which they were created.
- 27.4 Requests for files will be processed as soon as possible; a minimum of 7 working days should be the normal processing time. The Contractor shall be completely responsible for requesting the files in time for their use.

END OF SECTION

SECTION 26 05 19

POWER CONDUCTORS

PART 1 – GENERAL

- 1.1 Furnish and install wire and cable for branch circuits and feeders specified herein and as shown on the electrical drawings.
- 1.2 Submittals: Submit manufacturers' data for the following items:
 - 1.2.1 All cables and terminations

1.3 <u>Common submittal mistakes which will result in the submittals being</u> <u>rejected:</u>

- 1.3.1 Not including all items listed in the above itemized description.
- 1.3.2 Including catalog cut sheets which have several items on a page, and not clearly identifying by highlighting, underlining, or clouding the items to be reviewed, or crossing out the items which are not applicable.
- 1.3.3 Not including actual manufacturer's catalog information of proposed products.
- 1.3.4 Do not include multiple manufacturers for similar products and do not indicate "or approved equal" statements, or "to be determined later" statements. The products being submitted must be the products installed

PART 2 – PRODUCTS

- 2.1 Wire and cable Rated 120 volt to 600 volt.
 - 2.1.1 All wire and cable shall be new, 600 volt insulated copper, of types specified below for each application. All wire and cable shall bear the UL label and shall be brought to the job in unbroken packages. Wire insulation shall be the color as specified herein and shall be type THWN-2. Insulated conductors shall be installed in all exterior exposed raceways. Conductors for branch circuit lighting, receptacle, power and miscellaneous systems shall be a minimum of No. 12 AWG. Increase conductor size to No. 10 AWG for 120 volt circuits greater than 100 feet from the panel to the load and for 277 volt circuits greater than 200 feet from the panel to the load. Circuit home-runs indicated to be larger than No. 12 must be increased the entire length of the circuit, including equipment grounding conductor. Wire sizes No. 14 through No. 10 shall be solid. No. 8 and larger shall be stranded.
 - 2.1.2 Aluminum conductors will not be permitted.
 - 2.1.3 MC type armored cable will not be permitted.

PART 3 - EXECUTION

- 3.1 Wire and cable shall be pulled into conduits without strain using powdered soapstone, mineralac, or other approved lubricant. In no case shall wire be repulled if same has been pulled out of a conduit run for any purpose. No conductor shall be pulled into conduit until conduit system is complete, including junction boxes, pull boxes, etc.
- 3.2 All connections of wires shall be made as noted below:
 - 3.2.1 Connections to outlets and switches: Wire formed around binding post of screw.
 - 3.2.2 No. 10 wire and smaller: Circuit wiring connections to lighting fixtures and other hard wired equipment shall be made with pressure type solderless connectors, Buchanan, Scotchlock, Wing Nut, or approved equal. Alternate "WAGO" #773 series or "IDEAL" #32, 33, 34 and 39 series push wire style connectors are also acceptable.
- 3.3 All wiring shall be continuous without splicing unless where specifically noted on the drawings or where permitted below.
 - 3.3.1 No. 10 wire and smaller above grade: Quantities as needed, connection made with pressure type solderless connectors, Scotchlock or equal.
 - 3.3.2 No. 10 wire and smaller below grade: Quantities as needed, connection made with 'Raychem' long barrel compression terminals with crimping tool and quantity of crimps as recommended by manufacturer, provide 'Raychem' WCSM-S series in-line heat shrink, sealant coated splice kit. Alternate products must be UL listed for direct burial/submersible and rated to (1000V).
 - 3.3.3 No. 8 wire and larger above grade: Quantities <u>only</u> where indicated, 'Raychem' long barrel compression terminals with crimping tool and quantity of crimps as recommended by manufacturer, provide 'Raychem' WCSM-S series in-line heat shrink, sealant coated splice kit. Alternate products must be UL listed for direct burial/submersible and rated to (1000V).
 - 3.3.4 No. 8 wire and larger below grade: Quantities <u>only</u> where indicated, 'Raychem' long barrel compression terminals with crimping tool and quantity of crimps as recommended by manufacturer, provide 'Raychem' WCSM-S series in-line heat shrink, sealant coated splice kit. Alternate products must be UL listed for direct burial/submersible and rated to (1000V).
- 3.4 All wiring throughout shall be color coded as follows:

480 volt system

208 or 240 volt system

Brown	Black
Orange	Red
Yellow	Blue
Grey	White
Green	Green
	Brown Orange Yellow Grey Green

- 3.5 Wiring must be color coded throughout its entire length, except feeders may have color coded plastic tape at both ends and any other accessible point.
- 3.6 All control wiring in a circuit shall be color coded, each phase leg having a separate color, and with all segments of the control circuit, whether in apparatus or conduit, utilizing the same color coding.
- 3.7 At all terminations of control wiring, the wiring shall have a numbered T&B or Brady plastic wire marker.
- 3.8 Cables when installed are to be properly trained in junction boxes, etc., and in such a manner as to prevent any forces on the cable which might damage the cable.
- 3.9 All conductors to be installed into a common raceway, shall be pulled into the raceway at the same time.
- 3.10 All conductors shall be installed in such a manner as to not exceed the manufacturers' recommended pulling tension and bending radius. The equipment used for pulling must be specifically designed for the purpose. Motorized vehicles such as pickup trucks, are not acceptable.

END OF SECTION

SECTION 26 05 26

GROUNDING

PART 1 – GENERAL

- 1.1 Furnish and install grounding and grounding conductors and electrodes as specified herein and as shown on the drawings.
- 1.2 Submit catalog data for all components.

1.3 <u>Common submittal mistakes which will result in the submittals being</u> rejected:

- 1.3.1 Not including all items listed in the above itemized description.
- 1.3.2 Including catalog cut sheets which have several items on a page, and not clearly identifying by highlighting, underlining or clouding the items to be reviewed, or crossing out the items which are not applicable.
- 1.3.3 Not including actual manufacturer's catalog information of proposed products.
- 1.3.4 Do not include multiple manufacturers for similar products and do not indicate "or approved equal" statements, or "to be determined later" statements. The products being submitted must be the products installed.

PART 2 – EXECUTION

- 2.1 Grounding
 - 2.1.1 All panelboard cabinets, equipment, enclosures, and complete conduit system shall be grounded securely in accordance with pertinent sections of CEC Article 250. Conductors shall be copper. All electrically operated equipment shall be bonded to the grounded conduit system. All non-current carrying conductive surfaces that are likely to become energized and subject to personal contact shall be grounded by one or more of the methods detailed in CEC Article 250. All ground connections shall have clean contact surfaces. Install all grounding conductors in conduit and make connections readily accessible for inspection.
 - 2.1.2 Provide an insulated equipment grounding conductor in all branch circuit and feeder raceway systems, sized in accordance with CEC 250-1122.
 - 2.1.3 Provide an additional individual insulated grounding conductor for each circuit which contains an isolated ground receptacle or surge suppression receptacle.
 - 2.1.4 Grounding of metal raceways shall be assured by means of provisions of grounding bushings on feeder conduit terminations at the panelboard,
and by means of insulated continuous stranded copper grounding wire extended from the ground bus in the panelboard to the conduit grounding bushings.

- 2.1.5 Except for connections which access for periodic testing is required, make grounding connections which are buried or otherwise inaccessible by exothermite type process.
- 2.1.6 The following ohmic values shall be test certified for each item listed. A written report signed and witnessed by the project IOR shall be provided to the engineer. If the ohmic value listed cannot be obtained additional grounding shall be installed to reach the value listed.

 - 2.1.6.2 Step down transformers and non-current carrying metal parts 25 ohms.
 - 2.1.6.3 Manholes, handholes, etc.

SECTION 26 05 33

CONDUIT AND FITTINGS

PART 1 – GENERAL

- 1.1 Furnish and install conduit and fittings as shown on the drawings and as specified herein.
- 1.2 Submit Manufacturer's data on the following:
 - 1.2.1 Conduit.
 - 1.2.2 Fittings
 - 1.2.3 Fire stopping Material.
 - 1.2.4 Surface Raceways.

1.3 <u>Common submittal mistakes which will result in the submittals being</u> rejected:

- 1.3.1 Not including all items listed in the above itemized description.
- 1.3.2 Including catalog cut sheets which have several items on a page, and not clearly identifying by highlighting, underlining or clouding the items to be reviewed, or crossing out the items which are not applicable.
- 1.3.3 Not including actual manufacturer's catalog information of proposed products.
- 1.3.4 Do not include multiple manufacturers for similar products and do not indicate "or approved equal" statements, or "to be determined later" statements. The products being submitted must be the products installed.

PART 2 – PRODUCTS

- 2.1 Rigid steel conduit, intermediate metal conduit (IMC), electrical metallic tubing (EMT) and flexible metallic conduit shall be steel, hot dipped galvanized after fabrication.
- 2.2 PVC conduit shall be Carlon or approved equal.
- 2.3 Liquid tight flexible metal conduit shall be Anaconda Sealtite type UA or approved equal. Fittings shall be Appleton, Crouse-Hinds, Steel City, T&B, or equivalent.
- 2.4 MC type armored cable is not permitted.

- 2.5 Fire stopping material shall provide an effective seal against fire, heat, smoke and fire gases. Fire stopping material shall be tested to comply with ASTME 814 and UL 1479. The submittal for this product shall include the UL listed system number and installation requirements for each type of penetration seal required for this project.
- 2.6 Each length of conduit shall be stamped with the name or trademark of the manufacturer and shall bear the UL label.
- 2.7 All plastic conduit shall be rigid, schedule 40, heavy wall PVC. All PVC conduit shall be UL listed. Underground utility company conduits shall comply with local utility co. requirements.
- 2.8 Plastic conduit shall be stored on a flat surface, and protected from the direct rays of the sun.
- 2.9 Where branch circuit or communication raceways cannot be concealed in ceilings or walls and are required to be exposed in interior spaces, provide nonmetallic surface raceway system sized per the manufacturer capacity requirements. A full complement of nonmetallic fittings must be available and matching device boxes and cover plates must be provided. The color of the raceway system, components and boxes shall be (white). Where data networking cabling is to be installed, all raceway fittings shall meet Category 5 radius requirements. Where specific raceway types have been noted on the drawings they shall be as follows:

2.9.1	System 'SR'	Hubbell Wiremold Panduit Hellerman-Tyton	WALLTRAK 1 series ECLIPSE PN05series LD5 series TSR2 series
2.9.2	System 'SR2'	Hubbell Wiremold Panduit Hellerman-Tyton	WALTRAK 22 2300D Series D2P10 TSR3 series
2.9.3	System 'SR3'	Hubbell Wiremold Panduit Hellerman-Tyton Provide with offset bo where specifically sho	BASETRAK series 5400 - series 70 series MCR Infostream" series exes, inline boxes may only be used own on the drawings.

PART 3 – FITTINGS

- 3.1 All metallic fittings, including those for EMT, flexible conduit, or malleable iron. Die cast fittings of any other material are not permitted.
- 3.2 Locknuts shall be steel or malleable iron with sharp clean cut threads.

- 3.3 Entrance seals shall be 0.Z. type FSK or equivalent.
- 3.4 Bushings and locknuts: Where conduits enter boxes, panels, cabinets, etc., they shall be rigidly clamped to the box by locknuts on the outside, and a lock nut and plastic bushing on the inside of the box. All conduits shall enter the box squarely.
- 3.5 Furnish and install insulated bushings as per CEC article No. 300 4 (F) on all conduits. The use of insulated bushings does not exclude the use of double locknuts to fasten conduit to the box.
- 3.6 Transition from plastic to steel conduits shall be with PVC female threaded adaptors.
- 3.7 Couplings and connectors for rigid steel or IMC conduit must be threaded, or compression type (set screw fittings are not permitted).
- 3.8 Couplings and connectors for EMT shall be compression, watertight. Set screw connectors are not acceptable, except for systems below 120 volts.
- 3.9 MC or MC-PCS type armored cable shall be provided with listed clamp type die cast zinc set screw connectors. Anti-short bushings shall be provided at all cable ends.
- 3.10 Connectors for flexible metal conduit shall be steel or malleable iron with screw provided to clinch the conduit into the adapter body. For sizes up to ³/₄" a screw-in, "Jake type," fitting may be used.
- 3.11 Install approved expansion fittings, or liquid tight flex conduit with a minimum 6" slack for conduits passing through all expansion and seismic joints.

PART 4 - EXECUTION

- 4.1 All branch circuits shall be installed concealed in walls or above ceilings or in concrete floor slabs. PVC conduits installed in concrete floor slabs shall transition to PVC coated rigid steel where conduits penetrate above finished grade or finished floor.
- 4.2 Conduit sizes for various numbers and sizes of wire shall be as required by the CEC, but not smaller than ½" for power wiring and ¾" for communications and fire alarm systems unless otherwise noted. Conduit in slab or below grade shall be ¾" minimum trade size, unless otherwise identified.
- 4.3 Conduit size shall be such that the required number and sizes of wires can be easily pulled in and the Contractor shall be responsible for the selection of the conduit sizes to facilitate the ease of pulling. Conduit sizes shown on the drawings are minimum sizes in accordance with appropriate tables in the CEC. If because of bends or elbows a larger conduit size is required, the Contractor shall so furnish without further cost to the Owner.
- 4.4 The Contractor shall be entirely responsible for the proper protection of this work from the other trades on the job. When conduit becomes bent or holes are

punched through same, or outlets moved after being roughed-in, the Contractor shall replace same, without additional cost to the Owner.

- 4.5 Rigid steel conduit or IMC shall be used as follows:
 - 4.5.1 Exposed exterior locations.
 - 4.5.2 Exposed interior locations below eight feet above floor, except in electrical rooms and closets.
 - 4.5.3 In hazardous or classified areas as required by CEC.
- 4.6 EMT conduit shall be used for areas as follows:
 - 4.6.1 All interior communications, signal, and data networking systems.
 - 4.6.2 All interior power wiring systems where not required to be in rigid steel, IMC or flexible conduit.
- 4.7 Flexible conduit shall be used for areas as follows:
 - 4.7.1 To connect motors, transformers, and other equipment subjected to vibration or where specifically detailed on the drawings.
 - 4.7.2 Flexible conduit shall not be used to replace EMT in other locations where the conduit will be exposed.
 - 4.7.3 Flexible metal conduit shall be ferrous. Installation shall be such that considerable slack is realized. The conduit shall contain separate code sized grounding conductor.
 - 4.7.4 Liquid tight flexible conduit shall be used in conformance with CEC in lengths not to exceed 4'. For equipment connections, route the conduit at 90 degrees to the adjacent path for point of connection. The conduit shall contain separate code sized grounding conductor. Use liquid tight flexible conduit for all equipment connections exposed in possible wet, corrosive or oil contaminated areas, e.g., shops and outside areas.
- 4.8 Plastic conduit shall be used for all exterior underground, in slab, and below slab on grade conduit installations. Install bell ends at all conduit terminations in manholes and pull boxes. Where plastic conduit transitions from below grade to above grade, <u>no plastic conduit shall extend above finished exterior grade, or</u> <u>above interior finished floor level</u>.
- 4.9 Plastic conduit joints shall be made up in accordance with the manufacturer's recommendations for the particular conduit and coupling selected. Conduit joint couplings shall be made watertight. Plastic conduit joints shall be made up by brushing a plastic solvent cement on the inside of a plastic fitting and on the outside of the conduit ends. The conduit and fitting shall then be slipped together with a quick one-quarter turn twist to set the joint tightly.

- 4.10 All underground conduit depths shall be as detailed on the drawings or a minimum of 30" below finished grade (when not specifically detailed otherwise), for all exterior underground conduits. Where concrete slurry or concrete encasement is provided, include "Red" color dye in mixture.
- 4.11 All underground conduits for power systems (600v and higher), shall be concrete encased and a minimum of 48" below grade or as detailed on the drawings. Where concrete slurry or concrete encasement is provided, include "Red" color dye in mixture.
- 4.12 Conduit shall be continuous from outlet to outlet, cabinet or junction box, and shall be so arranged that wire may be pulled in with the minimum practical number of junction boxes.
- 4.13 All conduits shall be concealed wherever possible. All conduit runs may be exposed in mechanical equipment rooms, electrical equipment rooms, electrical closets, and in existing or unfinished spaces. No conduit shall be run exposed in finished areas without the specific approval of the Architect.
- 4.14 All raceways which are not buried or embedded in concrete shall be supported by straps, clamps, or hangers to provide a rigid installation. Exposed conduit shall be run in straight lines at right angles to or parallel with walls, beams, or columns. In no case shall conduit be supported or fastened to other pipes or installed to prevent the ready removal of other trades piping. Wire shall not be used to support conduit.
- 4.15 It shall be the responsibility of the Contractor to consult the other trades before installing conduit and boxes. Any conflict between the location of conduit and boxes, piping, duct work, or structural steel supports, shall be adjusted before installation. In general, large pipe mains, waste, drain, and steam lines shall be given priority.
- 4.16 Conduits above lay-in grid type ceilings shall be installed in such a manner that they do not interfere with the "lift-out" feature of the ceiling system. Conduit runs shall be installed to maintain the following minimum spacing wherever practical.
 - 4.16.1 Water and waste piping not less than 3".
 - 4.16.2 Steam and steam condensate lines not less than 12".
 - 4.16.3 Radiation and reheat lines not less than 6".
- 4.17 Provide all necessary sleeves and chases required where conduits pass through floors or walls as part of the work of this section. Core drilling will only be permitted where approved by the Architect.
- 4.18 All empty conduits and surface mounted raceways shall be provided with a ¼" polypropylene plastic pull cord and threaded plastic or metal plugs over the ends. Fasten plastic "Dymo" tape label to exposed spare conduit to identify "power" or "communication" system, and to where it goes.

- 4.19 The ends of all conduits shall be securely plugged, and all boxes temporarily covered to prevent foreign material from entering the conduits during construction. All conduit shall be thoroughly swabbed out with a dry swab to remove moisture and debris before conductors are drawn into place.
- 4.20 Bending: Changes in direction shall be made by bends in the conduit. These shall be made smooth and even without flattening the pipe or flaking the finish. Bends shall be of as long a radius as possible, and in no case smaller than CEC requirements.
 - 4.20.1 For power conduits for conductors (600v and below), provide minimum 36" radius (vertical) and 72" radius (horizontal) bends.
 - 4.20.2 For power conduits for conductors (greater than 600v), provide minimum 72" radius (vertical) and 72" radius (horizontal) bends.
- 4.21 Supports: Conduit shall be supported at intervals as required by the California Electrical Code. Where conduits are run individually, they shall be supported by approved conduit straps or beam clamps. Straps shall be secured by means of toggle bolts on hollow masonry, machine screws or bolts on metal surfaces, and wood screws on wood construction. [No perforated straps or wire hangers of any kind will be permitted. Where individual conduits are routed, or above ceilings, they shall be supported by hanger rods and hangers.] Conduits installed exposed in damp locations shall be provided with clamp backs under each conduit clamp, to prevent accumulation of moisture around the conduits.
- 4.22 Where a number of conduits are to be run exposed and parallel, one with another, they shall be grouped and supported by trapeze hangers. Hanger rods shall be fastened to structural steel members with suitable beam clamps or to concrete inserts set flush with surface. A reinforced rod shall be installed through the opening provided in the concrete inserts. Beam clamps shall be suitable for structural members and conditions. Rods shall be galvanized steel 3/8" diameter minimum. Each conduit shall be clamped to the trapeze hanger with conduit clamps.
- 4.23 All concrete inserts and pipe clamps shall be galvanized. All steel bolts, nuts, washers, and screws shall be galvanized or cadmium plated. Individual hangers, trapeze hangers and rods shall be prime-coated.
- 4.24 Openings through fire rated floors/walls and/or smoke walls through which conduits pass shall be sealed by Fire stopping material to comply with Division 1 to seal off flame, heat, smoke and fire gases. Sleeves shall be provided for power or communication system cables which are not installed in conduits, and shall be sealed inside and out to comply with manufacturers UL system design details. Where multiple conduits and/or cable tray systems pass thru fire-rated walls at one location, the Contractor shall submit copies of the manufacturers UL system design details proposed for use on this project. All Fire stopping material shall have an hourly fire-rating equal to or higher than the fire rating of the floor or wall through which the conduit, cables, or cable trays pass.

- 4.25 Provide cap or other sealing type fitting on all spare conduits. Conduits stubbed into buildings from underground where cable only extends to equipment, the conduit/cable end shall be sealed to prevent moisture from entering the room or space.
- 4.26 All conduits which are part of a paralleled feeder or branch circuit shall be installed underground.
- 4.27 All conduits which are required as a part of systems specified in Divisions 27 or 28, or any other low voltage communication systems, shall be furnished and installed by the Division 26 Contractor.
 - 4.27.1 The Contractor shall coordinate all conduit requirements with each system supplier prior to bid to determine special conduit system requirements.
 - 4.27.2 The Contractor shall provide a pull rope in all conduits for these systems.
 - 4.27.3 The Contractor shall provide conduit sleeves for all open cable installations thru rated walls or block walls. Provide conduit from each building main termination cabinet or backboard to the nearest accessible ceiling for access into all electrical or communications rooms.
- 4.28 In addition to the above requirements, the following requirements shall apply to all data networking conduits:
 - 4.28.1 Flexible metal conduit may only be used where required at building seismic and/or expansion joints.
 - 4.28.2 All underground conduits shall be provided with minimum 24" radius elbows (vertical) and 60" (horizontal).
 - 4.28.3 No length of conduit above grade shall be installed to exceed 150 feet between pull boxes, or points of connection, unless where specifically detailed on the drawings.
 - 4.28.4 No length of conduit shall be installed to exceed two 90 degree bends between pull boxes, or points of connection, unless where specifically detailed on the drawings.
- 4.29 Where surface raceways are installed in interior spaces, the Contractor shall take care to route in straight lines at right angles to or parallel with walls, beams, or columns. All raceways and device boxes shall be securely screwed to the finish surface with zinc screw "Auger" anchors Stk #ZSA1K by Gray Bar Electric or equal. Tape adhesive application will not be permitted.
- 4.30 The Contractor who installs surface raceway systems shall provide and install complete with wire retention clips, one for every (8) vertical feet or (5) horizontal feet or portion thereof. This Contractor shall also provide <u>each</u> raceway channel with pull strings.

4.31 It shall be the responsibility of the Contractor installing the raceway to coordinate the installation of raceway device plates and inserts with the communications or data contractors.

SECTION 26 05 34

OUTLET AND JUNCTION BOXES

PART 1 – GENERAL

- 1.1 Furnish and install electrical wiring boxes as specified and as shown on the electrical drawings.
- 1.2 Submit manufacturer's data for all items.

1.3 <u>Common submittal mistakes which will result in the submittals being</u> rejected:

- 1.3.1 Not including all items listed in the above itemized description.
- 1.3.2 Including catalog cut sheets which have several items on a page, and not clearly identifying by highlighting, underlining or clouding the items to be reviewed, or crossing out the items which are not applicable.
- 1.3.3 Not including actual manufacturer's catalog information of proposed products.
- 1.3.4 Do not include multiple manufacturers for similar products and do not indicate "or approved equal" statements, or "to be determined later" statements. The products being submitted must be the products installed.

PART 2 – PRODUCTS

- 2.1 Boxes shall be as manufactured by Steel City, Appleton, Raco, or approved equal.
- 2.2 All boxes must conform to the provisions of Article 370 of the CEC. All boxes shall be of the proper size to accommodate the quantity of conductors enclosed in the box. Minimum box size shall be 4" square x $1-\frac{1}{2}$ " deep.
- 2.3 Boxes generally shall be hot dipped galvanized steel with knockouts. Boxes on exterior surfaces or in damp locations shall be corrosion resistant, cast feraloy and shall have threaded hubs for rigid conduit and neoprene gaskets for their covers. Boxes shall be Appleton Type FS, Crouse-Hinds, or the approved equal. Conduit bodies shall be corrosion resistant, cast malleable iron. Conduit bodies shall have threaded hubs for rigid conduit and neoprene gaskets for their covers. Conduit bodies shall be Appleton Unilets, Crouse-Hinds, or the approved equal. Where recessed, boxes shall have square cut corners.
- 2.4 Deep boxes shall be used in wall covered by wainscot or paneling and in walls or glazed tile, brick, or other masonry which will not be covered with plaster. Through the wall type boxes shall not be used unless specifically called for. All boxes shall be nongangable. Boxes in concrete shall be of a type to allow the

placing of conduit without displacing the reinforcing bars. All lighting fixture outlet boxes shall be equipped with the proper fittings to support and attach a light fixture.

- 2.5 All light, switch, receptacle, fire alarm devices and similar outlets shall be provided with approved boxes, suitable for their function. Back boxes shall be furnished and installed as required for the equipment and/or systems under this contract.
- 2.6 Pull and junction boxes shall be code gauge boxes with screw covers. Boxes shall be rigid under torsional and deflecting forces and shall be provided with angle from framing where required. Boxes shall be 4" square with a blank cover in unfinished areas and with a plaster ring and blank cover in finished areas. Covers for flush mounted oversize boxes shall extend ³/₄" past boxes all around. Covers for 4" square boxes shall extend ¹/₄" past box all around.
- 2.7 All terminal cabinets and junction boxes or equipment back boxes which are required as a part of systems specified in Divisions 27 or 28, or any other low voltage communication systems, shall be furnished and installed by the Division 26 Contractor.
 - 2.7.1 The Division 26 Contractor shall coordinate all box requirements with each system supplier prior to bid to determine special cabinet or back box requirements. The Contractor shall also provide stainless steel blank cover plates for all low voltage systems installed for future equipment.
 - 2.7.2 The Contractor shall provide all plywood backboards indicated on walls or inside equipment enclosures. All backboards shall be a minimum of ³/₄" thick fire rated type plywood.
 - 2.7.3 The Contractor shall coordinate exact rough in locations and requirements with each system supplier.
- 2.8 In addition to the above requirements, boxes for data networking wiring and equipment shall comply with the following:
 - 2.8.1 All boxes shall be a minimum of 4-11/16" square x 2-1/8" deep.
 - 2.8.2 Where pull boxes are required on individual conduits $1-\frac{1}{4}$ " or smaller, provide $4-\frac{11}{16}$ " square x $2-\frac{1}{8}$ " deep boxes. Where pull boxes are required on conduits larger than $1-\frac{1}{4}$ " for straight pull through, provide eight times the conduit trade size for box length. Where pull boxes are required on conduits larger than $1-\frac{1}{4}$ " for an angle or a U-pull through installation, provide a minimum distance of six times the conduit trade size between the entering and exiting conduit run for each cable.
- 2.9 Recessed boxes installed in fire rated floors/walls and /or smoke walls shall be sealed by Fire stopping material to comply with Division 1 to seal off flame, heat, smoke and fire gases. The Contractor shall submit copies of the manufacturers UL system design details proposed for use on this project. All Fire stopping

material shall have an hourly fire-rating equal to or higher than the fire rating of the floor or wall through which the conduit, cables, or cable trays pass.

PART 3 – EXECUTION

- 3.1 Boxes shall be installed where required to pull cable or wire, but in finished areas only by approval of the Architect. Boxes shall be rigidly attached to the structure, independent of any conduit support. Boxes shall have their covers accessible. Covers shall be fastened to boxes with machine screws to ensure continuous contact all around. Covers for surface mounted boxes shall line up evenly with the edges of the boxes.
- 3.2 Outlets are only approximately located on the plans and great care must be used in the actual location of the outlets by consulting the various detailed drawings and specifications. Outlets shall be flush with finished wall or ceiling, boxes installed symmetrically on such trim or fixture. Refer to drawings for location and orientation of all outlet boxes.
- 3.3 Furnish and install all plaster rings as may be required. Plaster rings shall be installed on all boxes where the boxes are recessed. Plaster rings shall be of a depth to reach the finished surface. Where required, extension rings shall be installed so that the plaster ring is flush with the finished surface.
- 3.4 All cabinets and boxes shall be secured by means of toggle bolts on hollow masonry; expansion shields and machine screws or standard precast inserts on concrete or solid masonry; machine screws or bolts on metal surfaces and wood screws on wood construction. All wall and ceiling mounted outlet boxes shall be supported by bar supports extending from the studs or channels on either side of the box. Boxes mounted on drywall or plaster shall be secured to wall studs or adequate internal structure.
- 3.5 Boxes with unused punched-out openings shall have the openings filled with factory-made knockout seals.
- 3.6 Where standby power and normal power are to be located in the same outlet box or 480V in a switch box, install partition barriers to separate the various systems.
- 3.7 All device boxes and junction boxes for fire alarm system shall be painted red and shall be 4-11/16" square by 2-1/8" deep. No exceptions.

SECTION 26 28 16

DISCONNECTS

PART 1 – GENERAL

- 1.1 Furnish and install all disconnect switches as shown on the drawings and as required by the CEC.
- 1.2 Submit manufacturers' data for all disconnects and fuses.
 - 1.2.1 Disconnects
 - 1.2.2 Fuses

1.3 Common submittal mistakes which will result in the submittals being rejected:

- 1.3.1 Not including all items listed in the above itemized description.
- 1.3.2 Including catalog cut sheets which have several items on a page, and not clearly identifying by highlighting, underlining or clouding the items to be reviewed, or crossing out the items which are not applicable.
- 1.3.3 Not including actual manufacturer's catalog information of proposed products.
- 1.3.4 Do not include multiple manufacturers for similar products and do not indicate "or approved equal" statements, or "to be determined later" statements. The products being submitted must be the products installed.

PART 2 – PRODUCTS

- 2.1 Acceptable manufacturers shall be Square D, Cutler Hammer, Siemens or General Electric.
- 2.2 Equipment manufactured by any other manufacturers not specifically listed in Section 2.1 are <u>not</u> considered equal, or approved for use on this project.
- 2.3 All switches shall be heavy-duty type, externally operated, quick-make, quickbreak, rated 600 volts or 240 volts as required, with the number of poles and ampacity as noted. All switches for motors shall be HP rated. Switches shall have NEMA-Type 1 enclosures, except switches located where exposed to outdoor conditions shall have NEMA Type 3R enclosure. Switches generally shall be fused except where noted to be non-fused on the drawings.
- 2.4 Where fuses are indicated, fuses shall be Bussman or Littlefuse (no known equal). Fuses shall be current limiting type with time delay characteristics to suit the equipment served.

PART 3 - EXECUTION

- 3.1 Mount all switches to structure or U-channel support. U-channel supports shall be cleaned and painted to prevent rust.
- 3.2 Switches shall be accessible with proper clearances in front per CEC 110-16.
- 3.3 All lugs shall be torque tested in the presence of the inspector of record.
- 3.4 Arc Flash and Shock Hazard
 - 3.4.1 The contractor is to provide, and submit to the engineer for approval, incident energy level calculations as determined using the methodologies described in NFPA 70E or IEEE standard 1584-2002.
 - 3.4.2 A warning label, as specified in the above standard, shall be placed on each switchboard, panelboard, and safety switch indicating the incident energy levels on the equipment to warn qualified personnel in accordance with NFPA 70E, section 110.16 Labels shall be laminated white micarta with black lettering on each. Letters shall be no less than 3/8" high.
 - 3.4.3 The incident level calculations for each piece of equipment shall be given to the owner and maintained on file by the maintenance department.
 - 3.4.4 The design goal is to minimize the incident energy to which a maintenance employee may be exposed and in no case more than 8 cal./cm².

SECTION 26 90 90

ELECTRICAL CLOSEOUT

PART 1 – GENERAL

- 1.1 Upon completion of the electrical work, the entire installation shall be tested by the Contractor, and demonstrated to be operating satisfactorily to the Architect, Engineer, Inspector and Owner.
- 1.2 All testing and corrections shall be made prior to demonstration of operation to the Architect, Engineer, Inspector and Owner.
- 1.3 In addition to the demonstration of operation, the Contractor is also required to review the content and quality of instructions provided on items demonstrated with the Architect, Engineer, Inspector and Owner.

PART 2 – EXECUTION

- 2.1 Wiring shall be tested for continuity, short circuits and/or accidental grounds. All systems shall be entirely free from "grounds," "short circuits," and any or all defects.
- 2.2 Motors shall be operating in proper rotations, and control devices functioning properly. Check all motor controllers to determine that properly sized overload devices are installed, and all other electrical equipment for proper operation.
- 2.3 Tests and adjustments shall be made prior to acceptance of the electrical installation by the Architect, and a certificate of inspection and acceptance of the electrical installation by local inspection authorities shall be provided.
- 2.4 All equipment or wiring provided which tests prove to be defective or operating improperly shall be corrected or replaced promptly, at no additional cost to the Owner.
- 2.5 Test all motor and feeder circuits with a "megger" tester to determine that insulation values conform to Section 110-20, California Electrical Code (CED). Test reports must be submitted and approved by the engineer before final acceptance.
- 2.6 Test all grounding electrode connections to assure a resistance of no more than 10 ohms is achieved. Augment grounding until the ohmic value stated above is achieved. Provide certified test results to the Architect, Engineer and Inspector.

SECTION 32 13 13

SITEWORK CONCRETE

PART 1 - GENERAL

1.01 SUMMARY

- A. Section Includes
 - 1. Cast-In-Place concrete pedestrian paving and sidewalks.
 - 2. Curbs and gutters.
 - 3. Exterior utility concrete pads.
 - 4. Perimeter concrete curbing, mow strips, concrete drainage structures, swales.
 - 5. Thrust Blocks.
 - 6. Slurry Concrete.
 - 7. Detectable Warnings
- 1.02 REFERENCES
 - A. SSPWC Standard Specifications for Public Works Construction, Latest Edition
 - B. ACI 117 Standard Specifications for Tolerances for Concrete Construction and Materials.
 - C. ACI 318 Building Code Requirements for Structural Concrete and Commentary, 2014 Edition.
 - D. ACI 301 Structural Concrete for Buildings.
 - E. ASTM American Society for Testing and Materials
 - 1. ASTM A185 Steel Welded Wire Reinforcement, Plain, for Concrete
 - 2. ASTM A615 Deformed and Plain Billet-Steel Bars for Concrete Reinforcement
 - 3. ASTM C33 Concrete Aggregates
 - 4. ASTM C94 Ready-Mixed Concrete
 - 5. ASTM C150 Portland Cement
 - 6. ASTM C171 Sheet Materials for Curing Concrete
 - 7. ASTM C309 Liquid Membrane-Forming Compounds for Curing Concrete
 - 8. ASTM C920 Elastomeric Joint Sealants
 - 9. ASTM C1107 Packaged Dry, Hydraulic Cement Grout (Non-Shrink)
 - 10. ASTM D1751 Preformed Expansion Joint Fillers for Concrete, Paving and Structural Construction
- 1.03 SUBMITTALS
 - A. Placement Schedule for approval: Provide details or sketches showing location of each placement of concrete Work. Do not deviate from location of expansion joints or scorelines.
 - B. Product data on concrete mix, joint filler, sealants, curing compounds and reinforcing.

5015037-000 – PALOMAR COLLEGE WELDING YARD IMPROVEMENTS

- C. Project Record Documents
 - 1. Accurately record actual locations of embedded sleeves, utilities and components that are concealed from view.

1.04 REGULATORY REQUIREMENTS

- A. Pedestrian walks, plazas and paving shall comply with CBC-11B, Sections 11B-302.1 and 11B.302.3. Architect has relied on CACRM published by DSA in its interpretation of these regulations.
- 1.05 QUALITY ASSURANCE
 - A. Maintain one copy of all records on site.
 - B. Acquire cement and aggrega<u>te from same source for all Work.</u>
 - C. Conform to Section 26.5.5 of πCl 318-14, when placing concrete during hot weather.
 - D. Conform to Section 26.5.4 d = CI 318-14, when placing concrete during cold weather. No placement of concrete permitted below 50 degrees Fahrenheit.
 - E. Mock-up
 - 1. Install minimum 5 feet by 5 feet mock-up of concrete sidewalk for each surface treatment specified.
 - 2. Install mock-up one month prior to installation.
 - 3. Locate as approved by the Architect.
 - 4. Use identical forming system, sub-grade type, reinforcing, expansion joints, score joints, finishing and edge trim as specified for installation.
 - 5. Architect approval required.
 - 6. Mock-up may not be used in final installation.
 - 7. Remove mock-up materials from site and dispose legally.

1.06 EXTENDED WARRANTY

- A. Manufacturer shall warrant prefabricated detectable warning texture products against failure in materials or workmanship for at least the specified warranty periods. Upon written notice from Owner manufacturer shall promptly, without cost, and with least practicable inconvenience to Owner correct such defects.
 - 1. Failures include, but are not limited to, significant degradation in color fastness, conformation, sound-on-cane acoustic quality, resilience, and attachment will not degrade significantly.
 - a. Significant degradation means that product loses 10 percent or more of its approved design characteristics, as determined by the authority having jurisdiction.
 - 2. Minimum Warranty Period: 5 years from date of Certified Completion.

PART 2 - PRODUCTS

2.01 REGULATORY REQUIREMENTS

- A. Portland cement concrete paving shall be stable, firm, and slip resistant and shall comply with CBC Sections 11B-302 and 11B-403.
- 2.02 CONCRETE MATERIALS
 - A. Cement: ASTM C150 Type I Normal or Type II Moderate, Portland Cement type, from one manufacturing plant only.
 - B. Aggregates: ASTM C33, single source for all materials. Maximum size aggregate: 1 inch.
 - C. Non-Shrink Grout: ASTM C1107, premixed compound consisting of non-metallic aggregate, cement, water reducing and plasticizing agents; capable of developing minimum compressive strength of 4,000 psi in 24 hours and 7,500 psi in 7 days unless otherwise indicated on Drawings; of consistency suitable for application and a 30 minute working time.
 - D. Crushed Aggregate Base: Crushed rock and rock dust conforming to requirements of Section 200-1.2, SSPWC, with 3/8 inch sieve requirement waived, or Class 2 aggregate base as defined in Section 26, CSS.
- 2.03 ACCESSORIES
 - A. Expansion Joints:
 - 1. Expansion Joint Filler ASTM D1751: Closed cell, 1/2 inch max. thick; FIBER EXPANSION JOINT by American Highway Technology, Kankakee, IL, DECK-O-FOAM by W. R. Meadows, or approved equal.
 - 2. Joint Devices: Integral extruded polystyrene plastic; 1/2 inch max. thick, with removable top strip exposing sealant trough; JOINT CAPS.
 - 3. Sealant: Polyurethane two-component type, self-leveling, for level surface application, UREXPAN NR-200 or DYNATRED for sloped surfaces, manufactured by Pecora Corp., Harleysville PA, or equal. Color shall be selected by Architect from manufacturer's standard list of colors.
 - 4. Primer: As recommended by sealant manufacturer.
 - 5. Joint Backing: ASTM C1330, Cylindrical, Type C, closed cell, polyethylene backer rod; oversized 30 to 50 percent larger than joint width. Green Rod by Nomaco Inc. or equal.

2.04 CONCRETE MIX

A. Mix and deliver concrete in accordance with 26.4 and 26.52.2 of ACI 318-14. Deliver concrete in transit mixers only. Mix concrete for 10 minutes minimum at a peripheral drum speed of approximately 200 feet per minute. Mix at jobsite minimum 3 minutes. Discharge loads in less than 1-1/2 hours or under 300 revolutions of the drum, whichever comes first, after water is first added.

- 1. Design Mix:
 - a. Concrete shall be minimum Class 520-A-2500 per section 201-1 of the SSPWC.
- 2. Do not exceed 0.50 water-cement ratio by weight for floor slabs and for other concrete.
- 3. Quantities of Materials: Weighmaster's records not required for sitework concrete.
- 4. Required Strength: Minimum Class 520-A-2,500 psi for site work concrete. Cross gutters shall be Class 520-A-3,250 psi per standards.
- B. Slurry Concrete:
 - 1. Slump: Between 4 inches and 6 inches.
 - 2. Aggregate: 40 percent sand by weight, 60 percent pea gravel, minimum 1/4 inch, maximum 5/8 inch.
 - 3. Portland Cement: ASTM C150, 2-sack mix (2 sacks of cement per cubic yard).
 - 4. Sufficient water shall be added to produce a fluid, workable mix that will flow and can be pumped without segregation of aggregate. Material shall be mechanically mixed until the cement and water are thoroughly dispersed.
- 2.05 REINFORCEMENT
 - A. Reinforcing Steel: ASTM A615; 60 ksi yield grade; deformed billet steel bars, uncoated finish.
 - B. Welded Wire Reinforcement: Plain type, ASTM A185; in flat sheets; uncoated finish, 6 x 6 W4.0 x W4.0 unless otherwise note on drawings.
 - C. Tie Wire: Annealed steel, minimum 16 gage size.
 - D. Dowels: ASTM A615; 60 ksi yield grade, plain steel, uncoated finish.

2.06 FORMS

- A. Conform to Section 26.11 of ACI 318-14.
- B. Plywood Forms: APA Medium density overlay, Group 1, Exterior, PS-1, for exposed surfaces. APA Plyform B-B, Class 1, Exterior, PS-1 for unexposed surfaces.
 1. Use flexible or curved forms for curves with a radius 100 feet or less.
- C. Lumber: Douglas Fir species, construction grade, Surfaced Lumber, with grade stamp clearly visible for smooth and straight exposed surface.
- D. Form Release Agent; commercially formulated form-release agent that will not bond with, stain or adversely affect concrete surfaces and will not impair subsequent treatments of concrete surfaces.

2.07 CURING MATERIALS

- A. Absorptive cover: AASHTO M 182, Class 2, burlap cloth made from jute or kenaf, weighing approximately 9 oz./sq. yd. dry.
- B. Polyethylene Film ASTM C171; 10 mil thick, clear, manufactured from virgin resin with no scrap or additives, manufactured by Burke-Edoco, Long Beach, CA, or equal as approved in accordance with Division 01, General Requirements for Substitutions.
- C. Water: Potable and not detrimental to concrete.

Curing Compound: ASTM C309, Type 2, Class B; wax resin base, Burke Wax Emulsion White curing compound, by Burke-Edoko, Euclid Chemical Co. or equal as approved in accordance with Division 01, General Requirements for Substitutions. Curing materials and procedures for colored concrete in accordance with coloring material manufacturer's recommendations.

PART 3 - EXECUTION

3.01 EXAMINATION

- A. Verify site conditions.
- B. Verify requirements for concrete cover over reinforcement.
- C. Verify that anchors, seats, plates, reinforcement and other items to be cast into concrete are accurately placed, positioned securely and will not cause hardship in placing concrete.

3.02 PREPARATION

- A. Prepare previously placed concrete by cleaning with steel brush and applying bonding agent in accordance with manufacturer's instructions.
- B. In locations where new concrete is doweled to existing Work, drill holes in existing concrete, insert steel dowels and pack solid with non-shrink grout.
- 3.03 PLACING CONCRETE (GENERAL)
 - A. Convey and deposit concrete in accordance with Section 26.5.2 of ACI 318-14. Remove loose dirt from excavations.
 - B. Notify Job Inspector minimum 24 hours prior to commencement of operations.
 - C. Ensure reinforcement, inserts, embedded parts, formed joint fillers, joint devices and accessories are not disturbed during concrete placement.
 - D. Ensure sub-base or base materials have been compacted or otherwise treated.

- 1. Remove unsuitable soil, backfill with clean compactable soil or approve granular material to required elevations.
- 2. Scarify exposed natural sub-base to depth of 6 inches. Bring to optimum moisture content and re-compact to 90 percent in accordance with ASTM D 1557.
- 3. Add approved aggregated base to required elevation in 6 inch maximum lifts. Bring to optimum moisture content and compact to 90 percent in accordance with ASTM D1557.
- E. Install joint fillers, primer and sealant in accordance with manufacturer's instructions.
- F. Place concrete continuously between predetermined expansion joints.
 - 1. Install expansion joints at vertical concrete walls at 24 feet on center unless noted otherwise on drawings.
- G. Do not interrupt successive placement; do not permit cold joints to occur. Avoid segregation of materials. Perform tamping and vibrating so as to produce a dense, smooth application free of rock pockets and voids. Do not use vibrators to move concrete horizontally.
- H. Do not allow concrete to fall free from any height which will cause materials to segregate. Maximum height of free fall permitted in any case: 5 feet.
- I. Defective Installation: Repair and clean at Contractor's expense all concrete damaged or discolored during construction. Where concrete requires repair before acceptance, the repair shall be made by removing and replacing entire section between joints and not by refinishing the damaged portion.
- J. Proper curing of concrete surfaces is the responsibility of the Contractor. Concrete failing to meet specified strength shall be removed and replaced.
- 3.04 ON-SITE CONCRETE SIDEWALKS, PEDESTRIAN PAVED AREAS AND RAMPS
 - A. Forms, Wood: Free from warp, with smooth and straight upper edges, surfaced one side, minimum thickness 1-1/2 inches adequate to resist springing or deflection from placing concrete.
 - B. Forms, Metal: Gage sufficient to provide rigidity and strength equivalent to wood.
 - C. Reinforcing Steel: Place bars at 12 inches on center each way for sidewalks and paved areas and #4 bars for edges unless otherwise indicated on Drawings.
 - D. Concrete Placement: Dampen subgrade to retain moisture in concrete mix. Tamp and spade to consolidate concrete for entire length of pour. Strike off upper surface to specified grades.
 - E. Isolation Joints: Locate at slabs abutting vertical concrete surfaces and as patterned on drawings. Install vertically, full depth of concrete with preformed joint filler recessed for plastic cap at 1/2 inch depth at top for sealant application.

- 1. Doweled Isolation Joints at Heavy Vehicle Driveways and Parking: At abutting building foundations; provide 1/2-inch diameter smooth steel dowels 14 inches long, one end of dowel lubricated and set in capped sleeve to allow for longitudinal movement, spaced at 24 inches on center maximum, 6 inches from edges.
- 2. Monolithic Curb and Gutter: No expansion joints required between gutter and curb face.
- F. Expansion Joints: Locate maximum 24 feet centers and as patterned on drawings. Install vertically, full depth of concrete, install preformed joint filler recessed for plastic cap at 1/2 inch depth at top for sealant application.
 - 1. Monolithic Curb and Gutter: No expansion joints required between gutter and curb face.
- G. Contraction/Crack Control Joints: At 8 feet each way at concrete paved areas, and 5 feet at sidewalks, tool joint with 1/2 inch radius, depth 1/4 the thickness of slab but not less than 1 inch deep. Refer to drawings for required design patterns.
- H. Curb Ramps: Form grooves, flush to finished surfaces, 12" wide border. Grooves at 1/4" deep, 1/4" wide and at 3/4" on centers. at 3 sides on level surface of the sidewalk. Provide patterns as indicated in drawings. Detectable Warnings at Curb Ramps per IR 11B-2 and 11B-3, 11B-4 CBC 11B-406.5.12, 11B-705.1.2.2 and 11B-705.1.2.3.
 - 1. Detectable warning (Truncated Domes) required at curb ramps less than 1:15 (6.7% slope), DSA IR 11B-3
 - 2. Detectable Warnings (Truncated Domes) required at all Curb Ramps, American with Disabilities Act Standards for Accessibility Design Section 4.7.7.
 - a. Set Paver Truncated Dome products in full mortar bed as indicated on drawings.
 - b. Form bottom edge flush and free of abrupt changes DSA IR 11B-2.
- I. Finish:
 - 1. Screed concrete to required grade, float to a smooth, flat, uniform surface. Edge all headers to 1/2 inch radius. Edge expansion joints to 1/4 inch radius. Steel trowel to hard surface.
 - 2. Grades less than 6 percent: shall conform to Section 11B-403.2 After final troweling, apply a medium broom finish transverse to centerline or direction of traffic. Finish shall be at least as slip resistant as that described as a medium salted finish.
 - 3. Grades exceeding 6 percent: shall conform to Section 11B-403.2 After final troweling, apply a heavy broom finish transverse to centerline or direction of traffic
 - 4. Walkway grades in excess of 5 percent shall conform to requirements of Section 11B-401.1 California Building Code.
- J. Curing: Cure surfaces utilizing one of the following methods:
 - 1. Spraying: Spray water over slab areas and maintain wet for 7 days, use burlap mats.

- 2. Spread polyethylene film over slab areas, lapping edges and sides, minimum 6 inches and sealing with pressure sensitive tape; cover with plywood or otherwise protect film from damage; maintain in place for 7 days.
- 3. Apply liquid curing compound at rate of 200 sf per gallon, using power sprayer equipped with agitator. Do not apply liquid curing compound to surfaces scheduled to receive paving units of any kind.
- **K.** Remove expansion joint plastic caps. Prime both sides of joint and apply self-leveling sealant per Section 07 92 00. Provide smooth concave surface.
- 3.05 CURB AND GUTTER, PERIMETER CONCRETE CURBING, CONCRETE DRAINAGE STRUCTURES, SWALES
 - A. Subgrade Preparation: Subgrade material, base material and compaction requirements as approved by the Geotechnical Engineer.
 - B. Forms: Single face type required, cut to conform exactly with face batter and radius, sufficiently rigid to resist springing or deflection from concrete placement. Clean forms of all loose dirt, mortar or similar materials and apply a light coating of oil or other suitable material prior to concrete placement.
 - 1. Slip Forms: Contractor's option upon approval of the Architect.
 - C. Reinforcement: Refer to drawings for size and spacing. Interrupt reinforcement at expansion joints.
 - D. Concrete Placement: Dampen subgrade to retain moisture in concrete mix. Tamp and spade to consolidate concrete to entire length of pour. Strike off upper surface to specified grades. Cut drain pipes to conform to curb batter.
 - E. Expansion Joints: Locate joint filler at maximum 20 foot centers. Trim off excess filler material flush to finish surface. No sealant application required.
 - F. Control Joints: at 8 feet on center, tooled joints, 1/2 inch radius.
 - G. Finish: Apply thin layer of mortar of 1 part portland cement to 1-1/2 parts sand to exposed faces. Trowel to a smooth and even finish with a fine hair broom applied parallel with the line of the work. Round all edges to 1/2 inch radius. No Contractor identification permitted.
 - H. Curing: Cure surfaces utilizing one of the following methods:
 - 1. Spraying: Spray water over curb and gutter and maintain wet for 7 days.
 - 2. Spread polyethylene film over areas, lapping edges and sides, minimum 6 inches and sealing with pressure sensitive tape; cover with plywood or otherwise protect film from damage; maintain in place for 7 days.
 - 3. Apply liquid-curing compound at rate of 200 sf per gallon, using power sprayer equipped with agitator.

3.06 CONCRETE THRUST BLOCKS

- A. Refer drawings for locations.
- B. Installed where the water main changes direction as at ells and tees and where the irrigation main terminates. Pressure tests shall not be made for a period of 36 hours following the completion of pouring of the thrust blocks. Concrete thrust blocks for supply mains shall be sized and placed in strict accordance with the pipe manufacturer's specifications and shall be of an adequate size and so placed as to take all thrust created by the maximum internal water pressure.

3.07 TOLERANCES

- A. Construction tolerances shall not violate dimensions, grades, slopes required by CBC for accessibility requirements. Adjust work accordingly to comply with requirements.
- B. Comply with tolerances of ACI 117 and as follows (tolerances may not exceed CBC maximum or minimum):
 - 1. Maximum deviation of 1/8 inch in 10 feet.
 - 2. Elevation: 1/4 inch (6 mm).
 - 3. Thickness: Plus 3/8 inch (10 mm), minus 1/4 inch (6 mm).
 - 4. Surface: Gap below 10-foot- (3-m-) long, unleveled straightedge not to exceed 1/8 inch (3 mm).
 - 5. Lateral Alignment and Spacing of Tie Bars and Dowels: 1 inch (25 mm).
 - 6. Vertical Alignment of Tie Bars and Dowels: 1/4 inch (6 mm).
 - 7. Alignment of Tie-Bar End Relative to Line Perpendicular to Pavement Edge: 1/2 inch (13 mm).
 - 8. Alignment of Dowel-Bar End Relative to Line Perpendicular to Pavement Edge: Length of dowel 1/4 inch per 12 inches (6 mm per 300 mm).
 - 9. Joint Spacing: 3 inches (75 mm).
 - 10. Contraction Joint Depth: Plus 1/4 inch (6 mm), no minus.
 - 11. Joint Width: Plus 1/8 inch (3 mm), no minus.